Contributions to the Comparative Study of the So－called Scombroid Fishes．

By

Kamakichi Kishinouye．
Callege of Agrinulture．Tukyn Imperial L＇aivenity．

With Plates XII N゙N゙N゙ amd of Text－figumes．

CONTENTS

Diagram showing a new scheme of classitication of the scombroid fishes．
Introduction 275
Comparative anatomy 295
External characters 2！ 9
External form of the bo？ly 296
Size 3
Colours and markings 239
Heal 391
Lateral line 393
Skin and scales ：305
Fins 306
Skeleton 309
Skull 310
Jaw bones 320
Opercular boves 323
Hyoid arch 326
Beanchial arches 324
Pectoral girulle 331
Pelvic giralle $3: 34$
Vertebral column 336
Ribs and intermnscular bunes 311
Interspinous bones 313
Muscular system 345
Ligaments and tendons 330
Nerrous system and sense organs 351
Abdoninal cavity 353
Air－bladiler 351
Digestive system 356
Respiratory system 363
Vascular system 365
Renal organ 379
Reproluetive system 380
Biology and eculogy 381
Habit 351
Food 383
Derelopment anil growth 384
Locomotion 388
Migration 389
Distribntion 390
Euemics and parasites 394
Fishery 394
Hook avd line 390
Dritt－zet $3 リ 8$
Seines 399
Pound－nets 399
Classificatiou 40
Teleostei 40
Acauthopterygii 400
Scombridæ 400
Cybiide 407
Plecostci 423
Thunnida 432
latsumonidx 450
Bibliography 465
Explabation of plates 168
Index to the rernacular names of scom－ broid fishes 172
Inilex 47

Diagram showing a new scheme of classification, adopted in this monograph, of the genera and families of the so-catlerl scombroid fisles fomed in Japanese waters, and their probable relations with each other.

Introduction．

 Kicroda（50），and Suycsaru Taker（73），arangex the sembroid fishes in four wroups：－mackerels，seeffishes，tmmies，and bonitos．＇Thomgh these anthors did mot anention the gremal characters of these inompis，I（h）mot hesitate to siy that their ofservations were keen and acennte．

In the oceident，Livaseves and his followes groupert the scombroid fishes in a single genns Scomber withont order；lat in 1829 Corien fombled is new （lassifieation，and aranged the scombnid fisles（les Semmbers）in eight genem：－ Scomber，Thynmus，Oreymus，Auxis，Surele，Cybium，Therystes，and Crempigles． This system has been followed by succeding anthons，thangh mome or less altered hy then．Thus at present tumies and bonits are classifferl with serrfishes and maxkerels t gether in one and the same fanily，Scombridie，and aven many recent investigators who have the tendency of dividing old families into many new ones have not yet tonched this fanily．REsin（62）olserved that the definition of the family Scombrida is not satisfactory，mad the matural affinities of different genera are little explainet．lierently Stamas（69）tried t）solve the mutual relationship of scombroid fishes fiom the stury of tho skeleton，and published valuable results．

The scombroid fishes are of great conserquence in the cemomy of ome （＂）ntry，ramking next in importance t ，the elnpenid fishes．Their ammal catels at Lemuts t ，ca． $150,000,000 \mathrm{~kg}$ ．in weight，and $25,000,000$ yen in valute．Theses fignes are based on statistionl reponts fom the govemment，and I believe that they are much moderestimater．Of course the amonnt of catch fluctuates vealy；but there is a tendency to indual increase，as the fishing gromuds we mome and more extended．Though these fshes are canght nearly in every pat of om empire，and the whole your round，they are more abondant in sonthem parts，and more on the Pacific coasts thau on the Japan Seat consts．Fiecently Japanese fishermen hare berm to catch tronies and honitos in great aboudance in the Hawaiian waters and in South Califonnia．

The scombrid fishes are mostly migratory，swim new the surface of the sea， and are very widely distributed．They form large schools，grow very rapidly， mostly att：uning a gigantic size，and fmrnish a rich，palatable，mutricions food．

I began the investigation of the scombroid fishes in 1911, and since then I have deroted my time chiefly to this study. As the result of the iurestigation, tumies and lonitos were found to be the most specialized forms of the bony fshes with many distinctive characters, hitherto unknown to science. The results lave from time to time been reported in Japanese in the "Suiswn Gakkwai Hō" (Procecdings of the Scientific Fishery Association).

The materials for the present study were chiefly collected at our laboratory from the fish-markets of Tokyo, and a part from rarions localities by the anthor himself, and through the courtesies of institutions and private persons. The anthor wishes to acknowledge with thanks the kind assistance of Messis. Senzō Adachi, Yeiji Agiydma, Takeo Avki, Hirotarō Asayo, Koichi Ramei, Niner Matsuno, the late Kōtarō Mayeda, Yōzō Narajima, Seishi Okada, Naotarō Ota, Yasuji Ohta, Katstya Tago, Kiyotono Tashiro, Seinirō Tominaga, Yōjrbō Wakiya, Fichitarō Yanada de., besides many friends in our College,

Imperial Fisheries Burean, and Suisan Koshyajo; Prof. W. C. M'Ltose, St. Andrews University, Scotland; the late Dr. Richard Rathbux, U. S. National Musemm ; Prof. D. S. Jordan, Stanford University, Cal. ; Messıs Kōsaku Iida, Filiel Nast, the late Noriyoshi Tōyama, ${ }^{\prime}$ dc. at Los Angeles; and Mi. E. Gobee, Fishery Station, Batavia. Finally I wish to express my appreciation of the painstaking work of the artist, Mr. Sheezō Kiriraiwa, who has endearoured to represent rery accurately the rarions species, and eren the number and exact armugement of scales in each species, and troublesome representations, of anatomical structures in detail.

Comparative Anatomy.

ELTERNAL CILARACTERS.

Exterial Fomy of the Body.

In general the form of the lody is nicely fusiform, so as to give the least resistance in locomotion, but in the case of Cylium chinense the anterior part of the donsal outline is concave (fig. 34). The rentral outline of the body is a little more curved than the dorsal, to brance the heary muscular part with

[^0]the lighter, risemal part. The posterion and of the laxly is mone slender then the anterion, the liondest part of the luxly being eromembly in adrance of the middle, letwern the snout and the candal pedmede. In markenels the bromdest pontion is fomm in the vertical, passine the middle of the first densal, that is a little before the middle of the bexly. In sermishes the broudest part lies at the pasterion part of the first dorsal or neme the amus. In tmmies the broulest part of the lowly is at the middle of the first dorsul, while in bonitus the houlest pat netuly cenineides with the middle of the looly. The borly is gemerally romuded (1) elliptical in eross-section. In Restrelliger and most species of the gemos Cylium the body is more or less compressed ; but in the Ilecostei the hody is always plmmp.

Generally the line eomecting the aper of the sume and the middle of the side of the tail passes throngh the centre of the eye, mid nemply coneides with the upper margin of the pectoral fin. In the Scombride the mape is narow, and the body is more or less compressed lateratly; in the Cybiida the mape: is broad, and the body is generally compressed and elongaterl; while in the Placostei the body is short and plump. In the Thumidae the nape is broad, but in the Katsumonida it is remarkibly narow. The caudal portion is shorter than the ablomimal portion in the Scombrida; longer in the Cybiides, except in the generid Acanthreyluium, Sarele, and Gymnosarda; neanly equal in the Thmmida; and shorter in the Katsuwonide. In the Scominide the caudal preduncle is thick, nearly rounded in cross-section and wants the lateral keel, while in the Cybiide it is rather thick, more or less horizontally depressed, and is provided with a large lateral keel, which is rather thin and broul at the hiud end. In the Plecostei the candal perdunde is very neurow, depressed, and is provided with a very thick keel, especially in the Kitsuwonida. In the Cybiide these keels are generally covered were clongated seales, but they are quite maked in the Plecostei.

The form of the body differs of course in different ages of fish. Generally the head is longer in small, immature specimens, but the proportion of its length to the height of the ludy is uften constant. Therefore immature specimens of seerfishes and their allied fonns, such is Cylium niplonium, C. commerson, and Sarde orientalis are broader than the mature forms; but in the Plecostei the immatue forms have a more slender body than the aulult. The
form of the borly differs sometimes in different scasons. Generally the form of the body is fat aud fine before the spawning seasou; but it hecomes lean :und ngly after spawning, and remains in such a condition during some there or four months. The leau form of Cybum niphominu in summer is especially remakable. This difference of fatuess in seasons is little discemible in the case of the Plcerstei. In the striped bonito, howerer, the flesh becomes remakahly watery after spawning, much pater in colour, oud at the same time losinge looth taste and tenacity.

Size of the Body.

Mackats are generally small, never rabling oue metre in the total lougth. Seefishes generally grow more than a metre in length, inn certain species attain a very large size, for example Cylnum chinense grows to a length of more than two metres, and to a weight of more than one hundred kg. Gymmoserda nude, Cybiem commerson aud Accaithocybium solundic grow ver lage tox. Much larger sizes are rather common in tmuies. Thumns orientulis grows to more tham 260 kg in weiglit, and car 3 m in leugth, and eren tmmies of 37.5 kg we recorded. Thars our common tumy is smaller than the Atlontic congener, the latter is said to grow to ca 451 kg in weight. Seothumus ruve is the smallest tnuy known, reaching watarity when it is ca 60 cm in lengtll, and 8 kg in weight, being nearly equal to the average size of the striped lunito. In bonitos the size lecomes small again, rarely exceeding a wetre in length, and 15 kis in weight, the swallest fish of the kind is fomad in the gemes Auxis. Fishes of the gents Auxis are car 30 cm long and 600 g in weight.

Cololt and Markises.

The lack is backish at the anterior part, changing gradually to huish or greenisll colom, with metallic lustre, and the belly is silvery or grevish, with infocsent reflections. Generably speaking the gromal colome of the lack is noconsh in the Sombrida, stuel-hne in the Cybiidae, and blnish in the I'lecostei. When we nserve the living fish, the colour greatly difiers from that of the doul, even recently litled. I have ohserved a remarkiblle difference in the genus Auxis, which is dark hnish geen when living, hut huish when
dend. The eolow of the living fishes is, howerer, very difticalt to olserve, is they live rather in off-shome waters, swin rery swifly, and die som after they are canght. A yellowish colom is fomed in mackerels and most thomies, but is not fomud in fisles of the Cyliidse, nor in bouitus. Moreorer, this eolon is not stable in specinues preserved in alcolol or fommatin.

Markings are mostly found on the back, mud they are gemerally backish. There are either irregular, waring streaks, dots, or longitudinal bauds, and those fomd in the back are dather than the gromed colom: Markings are
 the hack, or are silvery in the sooty gromud. 'The nmmber of the matrings comesponds genmally with that of myotomes. Markings on both sides of the brody we not stric!ly symmetrical. Colour aud makings fede awoy in long preservel specimens. On the contrary makings invisible in fresh state may become visible after sonue days preservation in aleohol or fomman. Colom anc markings of the immature forms differ greatly from those of the adult. Generally, immature fisles have simpler and less mumerous makings than the adult; loat in the striperl lonito immatme fishas bave more monerons stripes than the adnlt.

Colour and markings heconse hight, when the fish is excited, and dull, or disappear whun frightencd.

In our common mackerels pignents are fomd below the skin, and abore the adipose layer, and in the skin which maty casily be peeled off, scauty, insignificant pignent-spots only are fomd. This explains the reason why stale maekerel often retain brillimut coloms. In Rersticlliger chrysowomes we find it row of dark spots on each side of the lase of the dorsul fin, besides two dark longitudinal b:unds in the lack. Two bands below these dark bauds and roming behind the pectoral are rellowish. The fellowish colour gradually fades in preserved specimens.

Seerfishes have generally two or more rows of dank roundish spots new. the laterial uedian line of the loody. In Cylvium niphonium (fig. 32) we sometimes find the whole body except the back densely corered with spots. In the same species the rentral mediau line, aud a longitudinal line rumiug lackward fron the base of ench pectoral are sonnetimes colomed lack. Cylium commerson (fg. 39) and Acandhocyliun solandir (fis. 31) lave miny transerse
hands, while the fish belonging to the genus Sichle lave 1 anny longitudinal lamds on the back (fig. 33). In a small immature specimen of Sorda orientalis, (h)tained on the east coast of Aomori-ken, I fumd 13 transrerse bands, and in these bands, five to seren, oblique longitutinal brads, were found. Fishes 1xlonging to the genus Gymnosarde bave wo markings at all (fig. 37). In the Cyhiidae dots and bands are generally few in number in immature forms, and the markings increase in number by intercalation as the fish grows larger. Cybium niphonium mader 10 cm in leugth, and Cybium Torecenum under ca 20 cm lack markings entively.

In adult tumies we find no markings, except many silvery lines and dots in the helly of certain species (fig. 45, 48). These silvery dots and lines are nut found in the other scombroid fishes. Adult bonitos have dink batuds senerally transverse in the back; but they are not conspicnons in the genu Katsuconus (fig. 53), as the bands are very brond and quite near each other. Longitndinal bands on the belly of Katomoonus and dank spots in the thoracic piut of Euthymus (fig. 54) are characteristic to the respeetive genus. Generally small immature forms of plecostean fishes are transversely banded and they extend from the dorsal median line to the rentral median line. These bands are broad anl they approach each other rery closely, in the Thumnida; but in the Fatsuwonide they are rather narrow, lwing more nurvow than the interval letween them, aud are short, not raching the ventral median line. Small immatme forms of Thannus orientalis (fig. 43) and Neothunnus macrop'erus hare wany dark transverse bands, which gra lually distupear from the dorsal side, when the fish is about half a rear old; but the rentral part of these hands remains all throngh life (fig. 45). As the fish sirows larger, these bands in the belly are subdivided by a series of dots. These boundary lines and series of dots gradually incline obliquely backwards, towats the reutral median line (fig. 45). In Purathumus moluchei of ca. 90 ewn in levgth I fomd rentral mankings, but in larger specimens they disnppear entirely. In Thomus (smo and Neothanus reerus (fig. 4S) irregnlar loygitndiaal bands of srevish colom wre fomd in the belly, and they anastomose with each other, learing silvery meshes. Th the former species the marking disappears in larger specimens, but in the latter, it remains lifelong. Pigments and silvery ingredients of bonitos :ure form at the surface of the skin. Therefore when
we peel ofl the skin, the columing is mostly lust, and only a thin pable layer of phoment is fumd above the alipne layer of the boty. Sometimes the belly of bonitos is sooty lown. Lishemen believe that such fishes manined
 phrmis, cat. 20 cm long, I frund at fant transwerse bimels near the lateral wedinm line, besides the longitndinal hands. These transreese hands are called hy fishermen hatuds of the swurel-type, and when thesz lound appear (a) the side of the fish, the are greatly exeited to hite so that we can anticipate at great eatch. In immature honitos cas 30 cm long, longitudinal hands are more mmerons than in the adnlt, the auxiliary hands being found near the lateral median line. In immature specimens of Euthonnus grato, ca 13 cm long, we find abont eight transvense hands, crussing down the lateral line. These hands are darker and bend a little backward at the dorsal part atho the lateral line. In a specimen ca 19 cm long there are abont thirteen transerse hamp. The course of the dorsal part of the hands above the lateral line now neady coincides with the boundary line between myotomes. Specimens of such sizo live une to three dark spots at the pectoral region.

The spinons dorsal, candal, and the axial side of the pectorals :are generally hatckish. Ventrals and the anal are pale coloured or nearly colourless. In the Crbiidar the spiusus dorsal is sencrally black, but in immature forms of some seerfisles it is colourless at the posterior portion. In Gymnosarda (fig. 87) the tip of the second dorsal and the anal is colomrless. Th the Plecostei the first dorsal is washerl with blark at the margin. It is remarkable that fins are more or less yollowish in tumies; but that colour never appens in the fins of serfishes aud bonitos. The yellow colonr is especially conspienons in Prerethumnes mebnchi and Veothemmes mereroptores; but not conspicnons in Thurness germo and Neothunmus rurus.

Hesp.

Gemerally spenking the head is large, one fifth of the total length of the Indy in the Scombrida, one sixtl in the Cyliida, and one fouth in the Plecostei. The length of the head is generally more or less longer than the height of the body, eren in the case of tumnies and bonitos. Therefore it is very remarkable that the head of Cybium koreanom is $1 \frac{1}{3}$ times the height
of the body (fig. 35). The heat is somewhat triangulaly pyramidal, as its upper surfuce is more or less that and the lateral sides oblique, meeting at the rentral median line. This characteristic form is vers well developed in the Plecostei, while it is rather a little modifed in the Cybiidx, as the head is wore compressed laterally than in other familics, and its top is more or less vaulted.

In the Sconbridie the suout is molerately long, cat. $1 / 3$ the length of luad, and the pusterior mostrils are slit-like. In the Cybidre the snout is nonch elongated, being nearly expal in length with the prort belind the eye. The anterior and posterior nostrils are nearer to each otleir, than in the Scombride and Plecostei, and the posterior nostrils are more or less elliptical and a little larger than the anterior. In the Plecostei the snont is ca. $1 / 3$ the length of the head, but it seems rather short, as the head is moad. In the genes Auxis the suont is rore short, being only ca. 14 the length of the head. The Japancse name for the fishes of that geuus is "modika," which neans that the eye is near the snont. The antrior nostrils are quite small, and the posterior hostrils are mare slits.

The month is temminal, not protractile. In the Scombridse it is rather wide, thie lind end of the upper juw reaching or passing beyond the vertical from the middle of the eyre; and the margin of the upper jan is mostly formed by the preorbital. The supplementary lone to the maxillary is very namow and small in this family. In the Cyliidae the month is very wide, the posterior eud of the upper jaw generally reaching leyond the posterior margin of the eye. But in Accuthocylium, Grammatorcynus, and Gigmosemila the maxillary scarcely reach the vertical from the center of the eye. In Accenthondium the preorbital forms the postcrion pant of the upper jaw. The supplenentary bone to the maxillary heis its posterion end romded. In the I'lecoster the month is compabatively small, the posterion end of the upper jaw not ratching the vertical from the midille of the eve. The supplementary bone to the maxillary has in hoad straight side at the posterion end. Au obliquely. downward grove in the skin from the gape of the month is deep and conspicuous.

In the so-called scomboid fishes the teeth in the jews are anmaged in owe row only. They are a little nore mmerons in the upler than in the
lower juw. They me furmed in atveoles and are replaced by new ones coming out between the old. In the Scombida the teeth aro very mimite. Indeed the Japmese name "suba" for the mackerel means minnte teeth in om ohd language. The romerine teeth when present are aranged in two lateral patches, and the palatine teeth when present we in one row omly. In the C.biidia the tectly we well developach, long, curved, Iaterally compressed, mud gencrally trenchant at the edges. Thas seerfishes aro voracions, and often hut fishermen and damage fishing apmatus too. Teeth on the romer and palatines are villifurm. In the Plecostei the teeth in jiws are small, conical and curved. In the Thmaida villiform teeth are fonud on the vomer, palatines, amel pterygoids. Mescpterygoid teeth are remarkable, as they are not fonud in the other fishes. The the Katsmonidie the teetly are fomed in looth jaws only; lout in the gemes Eudhymus palatines :ud sometimes the vomer too ine toathed. In these cases the teeth are aranged in one row ouly, and they we rather large.

The eyes are comparatively suall in the Cybidax, being coutained more than 7-10 times in the length of the head, and more than :80-40 times in the total length of the body; lont they are large in Gymmostodu. In the: Scombrida and Plecostei the eyes are large, being contaned less than $6-10$ times in the head, and 18-27 times in the loody. In the Scombnide the adipose eyelids are remakably well developed. In the Cybiidae and Plecustei the eyelids scarcely cover the eve-hall. Thumus germo and l'wuthanous melachit lave large eyes, these tamies descond to the deeper strinta of waters. The ere-capsules are well developed and more on less calcifed in the Plecostei.

Tateral Line.

The lateral line more or less undulates. Th the Scombrida, howerer, the mululation is insignifemt, being nearly straight from the nape t the candal peducele, ruming more or less parallel t, the dorsal median line of the body, and the perforated scales in the line are only a little modified foum other scales. In the Crbiidae the lateral line rums gencrally paralled to the dorsal median line of the hody for some distance from the nape, and at the candal part the lateral line nearly coincides with the lateral median line of the body: These two prortions of the latern line are connected by an oblique portion.

The pasition of this oblique portion is either under the first dorsal or muter the second. In fishes of this family the lateral line often sends out many lunaches on both sides (figs. 31, 32, 35), and these branches are rertical in Acanthocyitima, but oblique in Cybium. The perforated scales are larger, thicker, and great!y modified in their form, and they may also distinctly le seen on the lateral keel of the caudal peduncle, at the treuchant edge.

The lateral line of Cylium korermum (fig. 35), C. yuttutum (fig. 61), Simble orientalis (fig. 33), and Gymnosarda muda (fig. 37), differ more or less from the typical form. Iu Grammatorcymus two latsral lines are found on each side of the body (fig. 62). The upper lateral line seems to correspond t. the normal lateral line, rmning parallel to the dorsal median line of the hods. The lower lateral line joins the upper with it right angle behind the pectoral, and runuing down backward approaches the rentral median line, it little behind the rent:als. Thence the line runs parallel to the reutral median line, and meets the upper lateral line, a little anterior to the lateral keel.

In the Plecostei perforated scales are rery little modified, and the undulation of the lateral line is not much pronomecel ; but it has a more or less characteristic feature in different families. It is worthy of note that the lateral line of the Thundida always takes a peculiar course, abore the pectoral (figs. $43,45-48$). In this region the comse of the literal line is rather difficult to trace, as the pores are indistinct, ferr in mumber, and much separated from each other. The lateral line of Thum orientalis is trpical. The lateral line of the Katsuronidee has only a slight rise above the pectoral, and has small mudulations at the c.und:bl portion. Kleazragen (4?) wrote iu the diagnosis of Thumus thannina as follows:-
"Die Seitenlinie bildet zuweilen eine Finickung nach oben über der Ditte cler Brustflosse ; daun senkt sie siclı, etwas mmregelmitssig wellig lanfend, lis zur Mittellinie."

This description is well adapter to the lateral line of tumies, hat not pruper for that of bonitos. Indecd the anthor confomeded immature, tumsies with bonitos, identifving Dicymus schecgeli of STEIND.ICHNEn (immatme frm of our common tunuy) with Thynnus thunina.

Skis and Scales

The skin is thick and well developed, :und its deeper layer, the dermis, is compersed of sereral layers of ohlique eonnective tissue, rumbing in two different directions, more or less perpoudieular to each other, and altematiog in successiou. The skin is more or less elastic, and extensile longitudinally, hat :Imost nonextensile transversely. In the Scombrita we coment ouly two layers of connective tissue in the skin, in the Cybiilat fow layys, and in the Plecostei about six layers.

Scales of the sn-malled scombmid fishes are generally described as cacloid, but most of them are imperfectly ctenoid, as they are toothed at the postrior margin, and have no striation or only faint striation at the surfac.. In the Scombride scales are nearly (ycloid, alnost equal in size amb fornu, everwwhere in the body, except those seales un the second dursal, inal, and the middle part of the caudal fin. Seales in these parts are sumall and slender: Iu the Cybiidir scales are small, thin, and are often concealed muder the skin or disappear from the most part of the hody. The diferentiation of scales is more marked than in the Scombride; those on the lateral line and those near the dorsad and rentral median lines are longitndinally elougated and densely crowded. Scales at the pectoral region are larger and more or less differentinted to form the corselet. In the Plecostei the corzelet is rery well dereloped. Scales in it are rery thick, and it is corered hy a tongh menlmane, so that the pectoral region is doubly strengtheued, probahly to protect the thick pontion of the cintareons hlood-sessels, peenliar and very important to the Plecostei. The soales on each side of the lase of the first dorsal are pretty large, rhombic, and are arrauged in several lougitudinal rows. Small elougated scales are found on the exterual side of the pectoral, and sometimes at the base of the ventrals and on the caudal. In the Plerostei scales romd the pectorals are small and elongated. In the Kat;awouider scales are not developed outside tlie corselet; but in an old striped lowito I found ninute seales seattered here and there outside the corselet. These scales are romulish and have a few concentric strie. In the Scombrida and Cybiidie small seales are found on the opercular bones; but in the Plecostei these bones are entirely naked. Siales on the cheeks are !uuch modified,
elongatel and arranged as if radiating from the eye. In the Scomlnida these seales are especially large and megual in size.

The scales of the Scombridec are longitndinally striated near the posterior margin, hesides the striation parallel to the posterior margin. Sales of the Cybida are mostly concentrically striated, and those of the Plecos!ei are mostly smooth at the surface and have a dentritic lumen inside. Very narrow seales, arranged longitudinally and very thickly together, are found on the second dorsul, candal and sometimes on the external surface of the pectoral, contributing to strengthoming these fins and at the same time to make their surface more smooth.

Fins.

The fius are generally well doveloped, stout, rigid, and are adapted for swift locomotion. Some one says that the fins of the male fish are larger than those of the female; but I have no fact material to corrobarate it. Like the development of other organs, fins ara also best dereloped in the Plecostei. In the Scombride spines and rays in fins are feeble, slender, fund fin-rays are transversely articulated as in most teleosteans. In addult forms of the Cybiida and the Plecostei, fin-rays axe longitudinally divided at the distal end, lont not articniated trimsversely, except in the genus frocmmatorcynus and in the ventrals. The ventral fins therefore seem to play a not rery important part in swimming in these fishes. The spines consist of single eonsolidated rods; but the lays are composed of two lateral halves.

The first dorsal fin may be entiroly folded into a groove. The other median fus may more or less be divaricated in the Teleostei; but in the Plecostei they are nearly solid, and their form and dimension is little altered.

The pectorals ars rather high in position, pretty well developed, and when depressed each of thom resti in a shallow depression, the dorsal margin of which generally coincides with the line, connecting the centre of the eve with the lateral median line of the candal pedmele.

When the pectorals are in motion, they we spead ont horizontally and their fore margin lies in a straight line, perpendieular to the axis of the body. Thus when we look at IThumes yermo, swimming in the sea, spreading its extrandinary long peetorals, we conceive a dragon-tly in tlight, hence our
fishermen eall the albacore "tombo-shibi", menuiug the dragon-tly thmy. The mmber of fin-rays in the pertoral is 18 in the genus Scomber, 19-24 in the
 Ketsucomus and Luthamus, and a 25 in Anxis. 'Thens in general the number of fin-rays in the pectoral increases as the structure of the body becomes more romplicate, and agrin decreases as the stmotne degenerates. The expmanse of the protoral is nearly melanged, though the mumber of rays is increased. There is no doult that the greater number of fin-rays inereases the rigidity of the fin itself. In the Scombrida the pectorals are small, triangular, and are situated a little higher than in the Cyhiido and Plecostei. In the Cyhida the pectorals are also small, often broad at the origin, and more or less cremulated at the rentral margin, as in Cyfirm niphonium, C. Iuttutum and Gymmosarda mula. In Cylium clinense, however, the pectorals wre large, and ronuded at the posterior margin (fig. 34). The form is quite extraurdinary. In the Thonnide the peetorats are generally long, reaching the origin of the secoud dorsal, and eveu pass hoyond it. These fins gradually trpering behind, are sabre-slaped. In the Katsumonide the pectorals are small and triangular. They are pointed at the posterior dorsal end. In Surdu and Plecostei a special elastie protnberance or rather a ridge is dereloped at the inner or dorsal side of the root of pectorals to fit tightly to it comesponding groove on each side of the borly.

The rentrals are thoracie, moderate in size, always composed of one spine and fire fin-rays, and as in many other fishes fit to depressions of the body when foldod. These fins seem to be of secondary importance, as their fin-rays remain transsersely articnlater, and ther are redneed in size in the Cybider, leing smaller than the anal, except in the gems Gymmosarda.

The dorsal is divided into two, first and second, and the posterior portion of the latter is further divided ints many finkets. In the Scombride the number of finlets is generally 5 , in the Cyhiide 6-9, and in the Plecostei S or 9 . The first dorsal is never contimons with the second, and is formed of several spines which when depressed are wholly received in a groore. The tip of the spines of the first dorsal is flexible, and each spine has a lolo at the proximal end. In the Scombrida and also in the genus Auxis of the Katsmonide, the two dorsuls are separated hy an interspace from the
suppression of some posterior spines, and in these cases the first dorsal is short lut rather high, higher than the second dorsal. The first dorsal of the Scombride originates from the myotome of the second vertebra, while that of the other so-called soombroid fishes originates from the myotome of the first vertebra. Therefore the origin of the first dorsal in the Scombrider is well bohind the origin of the pectoral fin, while in the other groups the former and the latter lie nearly in the same vertical. In the Scombridio the spines of the first dorsal are very feeble, and the first spine is shorter than the secoud, which is generally the longest (figs. 28, 29). In the Crbiidse the first dorsal is generally low, long, mostly black, and its outline is more or less convex, gradually descending backwards (flgs. 31-37, 61, 62). The first spine is not the lougest as in the Scombrida. 'I'he first dorsal of Aconthocylium solantri differs from that of allied fishes in being brond and of nearly the same lneadth thronghont (fig. 31). In Cybium the height of the first dorsal is $1 / 4-1 / 3$ the height of the body. In the Plecostei the first dorsill is generally high and the outline of its dorsal posterior side is concare, and its first spine is always longest and thickest, the following spines, though decreasing lather rapidly in length are also strong (figs. 43-4S). In the genus Katsuromus the height of the fust dorisal is best developed. The longest spine is about $3 / 5$ the height of the body. In other bonitos aud most tumnies the height of the first dorsal is contained about twice in the height of the body.

The second dorsal and anal are nearly equal in form and size. The former precedes the latter one myotome in Scomber and Cybium, and about three myotomes in the Thimnidx. Fin-rays of these fus grasp the distal segment of the interspinous bone between the proximal ends of their lateral halres. In the Scombrida these two median fins are respectively smaller than the spinous dorsal, and fin-rays of these fins are feeble and transrersely articulated. In Scomber moreover an isolated spine is fonnd before the anal as in the Ciunangita. In the Cybiida these two fins are pretty well dereloped, generally ligher than the fust dorsal, and their fu-ruys are thick and nonarticnlated. As some anterior fin-ribs of these fins are well dereloped, their form hecomes falcate. They are pretty large, well developed in Cybium koreanum (fig. 35) and C. guttatum (fig. 61); but are poorly dereloped and
small in Accuithocylium (fig. 31), Froammalorcynus (fig. 62), and Sarde (fig. 32). In the 'Thunnila these fins are falcate, conspienonsly developed, and interspinous hones supporting fin-rays of these fins are remarkably bruart. In some forms of Neothumus mucropterus these fins are untsually doveloped, brightly coloured, and their tips nearly touch the terminal points of the candal. In tumies as well as in Cybium these fins grachatly elongate: with the agre of the fish. In immature thomies and also in bonitos the second dorsal and anal are smaller than the first dosmal (figs. 43, 53-56). These fins are rery small in the Kitsuwouida, espocially in the degenerated genera, Euthynnus and Auxis.

The caudal fin is strong and lunate. Its two lobes are ncarly equal in size and form, but the upper lobe is often slightly larger. In the Scombrida the fin-russ are soft, thin, and transversely articulated. In the Crbiido the size of the candal is comparatively large, and its fin-rays are thick, and nou-irticulated. The longest fin-ray in one lobe of the fin makes an angle of car 60° with the longest in the other lobe. The fin-riays next on each side of the meditu fin-ray project posteriorly at the middle (figs. 31, 36). In the Thmonide the fin-rias of the caudal wre so thick and robust, that prehistoric fishermen apparently used it for spear-heads. A specimen of such an implement 21 cm . loug, carred from one of these fin-rays of our common tnmyr, was discovered by Mr. Genshichi Yendo in a shell-mound in Miyatojima near Scudai, Miyagi-ken. The angle made by the longest fin-rays in the tro lobes of the caudill is more than 90° in the Thunnida and Katsuronidxe. Fin-rays of the caudal of the striped bowito are sometimes used as tooth-picks after being cleaned and bleached. Among the so-called scombroid fishes in our waters the candal fin is largest in Cylium chinense, the lengtlo of its upper lobo being longer than the height of the body, and ca. $1 / 4$ the length of the body (fig. 34). In Cybium guttatum (fig. 61) the caudal fiu is also very large.

SKEJETON.

The Scombride, Cybiidar, and Plecostei differ a great deal from cacli other in the skeleton, the fundamental structure of the body. There seems to be very little relation between the skeleton of the Scombridio and that of the Cybiidx; but the gradual transformation of the skeleton of the Cybiide to
that of the Plecostei is obvions. The skeleton of the Scombride is unique in many respects, but it is more or less related to that of the Serranidæ, and it has a remote relation to the Caraugida. The characters of the skeleton of different scombroid fishes may well be muderstood by comparing the middle transverse sections of rertebre, shown in Pl. NYI.

In the Scombridx the skeleton is weak and brittle. The cranial bones are thin, and not firmly connected together at the anterior part. The vertebre are notably small, and only a little diferentiated in form in different regions of the body (figs. 7, 30). They are rather loosely connected and clevoid of deep grooves. The neural and hromal spines, interspinous bones, aud suspensorium of the mandible are narow and slender. In the Cybiidæ the skeleton is also brittle. The lremal spine is scarcely developed in the precandal region (figs. $38-42$). The neural spine of some anterior precaudal rertebre is broad. Except these broad nemal spines, the remaining neural and hamal spines, and interspinous boues are weak and slender. The skeleton of Surda (figs. 11, 42) and Gymnosarda (figs. 12. 38) approaches the skeleton of the Plecostei in the development of the lateral keel, in the vertebre of the candal peduncle, and the inseparable conuection of these vertebrie with each other. Grooves and ridges in vertebre become conspicnous, and the substance of the rertebre becomes hard and compact, as the fish is more highly specialized.

In the Plecostei the skeleton is hard, compact, and the cramial bones are rery firmly connected. The rertebre are comparatively large, have many dezp grooves, and their differentiation in different regions is remarkable (figs. 1:3-15, $49-52,57-60,64)$. The nemal and hæmal spines of the rertebral column are thick and the interspinous bones are very broad. The development of long hamal spines in the precaudal region is remarkable. The so-called inferior formmen is very broad, especially in the Katsuwouida, forming a basket-work of the hemal process. In this family the epihemal spine or bony pedicle of Staris is particularly developed between the centrum of many vertebre and their hemal arch.

Skull.

In the scombroid fishes the skull is generally triangulaly pyramidal, and
on the dorsul, pusterior part we find five longitudinal ridges or crests. The median ridge is continuons to the oceipital crest, separating the right and left lateral muscles, and aflurding the surface of insertion to the protactor lorsalis at the posterior part. The inmer ridge or tomporal erest of Stums and cretes intormediares of Culam arm found at the mid-ansal beul of the epaxial purt of the lateral muscle, while the onter sidges or piterotie crests sepmate the lateral muscle from the ficial muscles.

In the Scommida the skall (fig. $30, a, b$) is emparatively high, heing umarly as light as broad, and is graduably pointed towards the anterior end. The lateral ridges on the dorsal sides of the skill converge formard, and disuppear near the posterior margin of the frontals. Wercorer there is a paris of short, accessory crests on the extermal side of the temporal erests. The pretotic processes are stout, sharply pointed and noutlexible. The tempral and pterotic crests are separated by a deep furrow and wre connected at the posterior end with a nearly vortical ridge. Nearly the anterion laff of the skull is directly under the skin, and is not covered by the lateral minscle.

Fig. A. Median sagittal section of the skull. 1, Soonther juponicus; 2, Oybium niphonium; 3, Thunus orientalis; 4, Katsuconus pelamis. The first vertebra is anchylosed to the shall of Thunnus.

In the Cybiide the skull is elongated，low，and flat，especially in the rentral，temporal region．Gencratly the length of the skull is coutained more than 1_{2}^{1} times in its lreadth．The dorsal crests are well developed，mostly rumning more than half the leugth of the froutals，and nearly parallel to each other．In the Plecostei the skull is short，ouly a little louger than broad， much hoader than high，and we find high ridges and deep depressions on its rentral side me anditory region of Masteman．The derelopment of these ridges and grooves differ greatly in different species．There are three foramina on the dorsal side of the skull，except in the geuns Aucis．The inner dorsal or temporal crests diverging furward，while the outer ridges are couverging；but in the Katsuwonide the inner ridges are nearly parallel to each other．The pterotic processes are long，flat，and flexille，especially in the Katsuwonida．In the Cyliidse aud Plecostei the posterior ends of the temporal and pterotic crests are connected with a straight lidge on each side of the skull，and the space between these two crests is nearly flat．In the Cybiidae and Plecostei the dorsal sufface of the skull is almost entirely covered with the lateral muscle，except in the cases of Grammatorcynus，Acanthocylium，inm Gymnosarda．In the Plecostei there is a special chamber，posterior to the myodome，and below the basioccipital．The sides of the chamber are formed by the parasphenoid．So I shall name this chamber the parasphenoidal chamber．On the rentral side of the cranimm，there are very deep depressions in the otic region．These depressions are quite peculiar to the Plecostei．

The ethmoid is a median lone，bomded by the frontals above，by the prefrontals at the lateral and posterior sides，and by the roner and parib－ sphenoid lelow．It has paired hom－like processes with a condylar surface for the maxillary at their ventral suface．In the Scombride，however，the condylar surface for the maxillary is found it the lateral ventral margin．The dorsal exposed surface of the ethmoid is crescent－shaped or Y－shaped in the Cybider ； lout it is more or less trapezoidal in the Plecostei．The concavity at the frout edge of the exposed dorsal surface of the ethnoid is to receive the premaxillary processes．

The prefontals are paired lones，forming the anterior wall of the orbit， and lie hetween the romer，parasphenoid，ethmoid，and the anterior part of the frontals．Generally they are massive，but in Scomber and Gymnosarda
they are thin hones, folded in diflerent directions. The prefrontals are loosely joined with each ather, is well is with other bones, exeept the vomer. 'They are longer than lroal, and have only one artienlating surface fin the patatine in the Scombride, and also in the Cybiidin, exept Sarlu and Gymmosurdf. In these gemerib and also in the Pleeostei the bones are nearly as long ats hroul, and have no artieulating surfiees fur the palatine. The olfactory nerve passes throngh the middle of the prefrontal.

The romer is an anterior median bone, thickener at the anterior end, but gradually attemated behind. The bone lies below the purasphenoid, aud is joined to it at the posterior part, at the anterior purt it is joined to the ethnoid and prefrontals with suture. The ventral surfince of the thick antarior end of the voner is often concave, otherwise nearly flat ind is armed with villons teeth. Thess teeth are grouped generally in a median longitudinal hund; lat in Scomber they are grouped in paired separate patelies.

The frontals are large, pined bones, mitiug with each other at the median line, and forming in bridge ower the orbit, they counect the braincase with the cthmoidal bones. Their anterior pat is thin, flat, and narrow, while the posterior part is broul, and more or less bat downward. From the eentre of the dorsal surface of each bone, five stria radiate in all directions. This central portion is thick. Auteriorly the frontals rest on the entire donsal surface of the prefroutals and the posterior part of the ethmoid. Posteriorly they :urticulate with the suproceipital, parietals, sphenotics, pteroties, and alispleyoids. In the scombroid fishes the frontals do not unite nor meet closely with each other at the posterior end, just above the alisphenoid. In the Scombridae we find ouly a slit there, in somo fishes of the Cybiido the slit is pretty large (figs. 38-40), and in the Plecostei it is large and always conspicuons. Before the slit or formmen the frontals unite with each other at the median line. In the Scombride the frontals before the slit aro thin, in the Cybiidne they we thiek, and in the Plecostei hollow. In the Thumnidx near the anterior half of the slit there is a pit with rongh walls for the attachment of a ligament connecting the skin to the sknll. In the Cybiidse and Plecostei the lateral external side of the frontal is raised and very thick, while the intermal side is raised to form a median erest, continuons to the supraccipital crest. Thas there is a broad furow on the dorsal

K゙ANAFICHI KISHINOCYE:

surface of the bone. This character, however, is not fomd in Grammatorcynus. In the Cybiide there is a pair of accessory crests between the tempral and pterotic crests, except in Sarla and Gymnosarda. And this accessory crest is sititated rather near the pterotic crest, and is not so conspicuous as in the Scombrida.

The alisphenoids are paired hones, forming the anterior part of the floor of the Iman-cirrity, situated on both sides of the rentral median formmen. (iencrally they don not meet at the median line, but are separated by is large formmen. They are hounded by the froutals at the anterior end, by the sphenotics at the exterior side, by the prootic and basisphenoid at the posterior end, aud by the supraoceipital at the dorsal side in Gymnosarda and Illecostei. The alisphenoids of the scombroid fishes never come in contact with the prefrontals, though Mastermax (56) states that the alisphenoids of the common Enropeam tunny extend from the prooties behind to the prefrontals in front. In the Scombride the alisphenoids are a little longer than hroad, nearly flat, and separated from the supraocipital. In the Cydiida the inner, interior end of the alisphenoids is more or less turwed downward, and in Cylviam niphouium (fig. A 2) and C. lioreanum these bones meet in the anterior median line, and are firmly joined together over the root of the olfactory nerve. In the Thmnnilae (fig. A 3) the inner zargin of the alisphenoid is produced downward, and mets with that of the opposite side in the median line, to form a median veutral wall, separating the reutral nee ian furamen into two, the small anterior for the olfactory werre, and the large pasterior for the optic. In the in...suwomide the alisphenoids end in a thick pointed process prodnced aloug the rentral side of the frontals, and the posterior part is divided into two horizontal sheets. The rentral sheet ends ahmost free; but in Euthymmes it meets .with a special broad process of the prootic. In the Cybiidae and Plecostei the alisphenoid has a dorsal brauch at the anterior emd. This dorsal branch and the anterior ventral branch grasj the thickened end of the frontal. In the Seombrida the alisphenoids do not reach the median miting line of the frontals; hat in the Cybidae and I'lecostei they reach the posterior end of the median uniting line of the frontals ind are prouluced a little further anteriorly below the frontals.

The patasphomid is it very long lone, moning nearly the whole length
of the ventral median line of the skinl, commecting the otic region with thes ethmoidal lanes. At tha montom end it rests on the vomer, and is very firmly unted with it, and at tho posterion end it is embraced ly the ventral sides of the basioceipital. Far the most part the parasphenoid is entirely free from other lones. It the anterion part the bone is mone or less flattened with a dorsal median ridge, and is mited to the prefontals :and ethmoid alfore At the ${ }^{x}$ asterion end of the free portion, the parasphenoid is rhombic in eross-section, hawing a ventral median keel. Now the pasterion and the lone has two short lateral wings to unite with the pronties. It the prosterion end, the loue becomes thin, wide, and is bent upwards at the lateral sides. In the Sombride the parasphenoid is rery slender, and in full grown forms its posterion ent nemply doses the foramen letween the two ventral wings of the basioccipital. A slamp rentral median ridge is found molerneath tho otic rogion. In the Cybiidae the parasphenoid is rather luow, forked at the hind end, thas leaving a suall natrow foramen, which commomicates with the myodome. Ln the fishes of this fimily as well ats of those of the Sembritar, the posterior part of the masphenod is rather flat. 'The ventrol median keel is searceiy develoned, except in Gymnosurda. In the Thmmida the dorsul median keel of the parasphemoid extends to a spot just lelow the hasisphenoid, and is firmly mited to the latter at the end of the keel. Gencrally there is a small rentral median hole near the posterior eud of the puraspheuoid. It is remarkable that the parasplenoid is hroad in the Pleenstei, and is tumed upwards at the lateral margin of the pasterion part, thus forming a special tubular chamber, chameteristic to the Plecostei. Thr chamber lies below the myodome, and is comected to it with in namow longitudinal slit. Thus the brain-cavity of the Plecostei is much separated from the base of the cranimm. The chamber is narow and pointed anteriorly, but diverges behind, and ends with an elliptical or rondish opening. In tho Kitsuwonida the donsal median keel of the parasphenoid is not conspienons at the posterion end of the ondit. The parasphenoidal chamber is better developed in this family than in the Thumidae. In Amis the parasphenoid is prodnced behind is a pair of long lomens herond the oeciput. In the Katsuwonida the rentral mehian keel is letter developed than in the Thmmidar.

The supranccipital is a median bone more or less elongated longitndinally,
with a well developed occipital crest. The boue is bounded in front by the frontals, and laterally by the parietals, epiotics, and sometimes by the exoccipitals as well. The posterior part of the bone grodually conserges, and hes now the median suture of the epiotics. The posterior slender portion is often extemded orer the suture of the exoceipitals. This bone has little chameteristics in different families.

The parietals are paired flat bones on both sides of the supraccipital, and rest on the sutural lines betwem the supraccipital, sphenotics, epiotics and sometimes pterotics, taking almost no part in the formation of the roof of the brain cavity. The parietals are smrounded in front by frontals, on the onter side lyy the pterotics, on the inner side by the supraccipital, and behind by the epiotics. The parietals are rather small, ench with a high, longitudinal crest on the dorsal surface. The crest forms in part of the temporal crest, and is coutinuons to the erest on the frontals in front, and to tho epiotic process behiud. In the Scombridae the parietals are provided with two crests. In the Cybiida the parietals are generally separated from the pterotics. In the Thmmide also the parietals do not mite with the pterotics, at most sometimes tonching with a corner above the sphenotics. In the Katsuwonidre the parietals are mited to the ptrroties at the outer posterior side, and in the gemus Auxis the whole onter side of the former bone is bordered by the latter, as in this gems the sphenotics do not appear at the dorsal surface of the skull.

The sphenotics form a part of the lateral wall of the optic lobe, and at the same time a part of the dorsal wall of the optic cavity, externally they are a part of the articulating facet for the anterior heal of the lyomandibular, moreover forming the pastorlital vidge. The sphenoties are bomided externally by the frontals, alisphenoids, prootics, pterotics, parietals, and epioties, imd internally by frontals, alisphenoids, prootics, supracceipital, and sometimes opioties. In Rustrelliger the parietals amd pterotics are also fonud romed the sphenoties. The sphenotics are generally seen at the dorsal side of the skull, hetween the pteroties and pinietals. In the Scombrida the sphenoties are fomul at the dorsal, esternal side of the cranimm, between the plerotic erests. The internal concarity of these bones is sublivided by a septnom. In the Cybiidae the sphenoties are more or less thattened bones and form a very
swall part in the lateral wall of the brain-ewity, generally with two concavities. In the Thumide the sphenotic las a hage concavity inside, and another large one outside. The latter forms the lanttom of a doep pit on the ventral surface of the ermium. The dorsal surfince of the sphenotic, lying between the temporal innd pterotic erests, is livided into two, by a process of the fruictal, extending orer these bones and joining the interior, internal corner of the pterotic. In the Katsuwonidis the sphenotics are mearly like thense of the Thumnide; but they appear only a little at the dorsial surface of the claninm between the two lateral crests, or they do not appen at all (Auxis). Moreover at their rentral surface, we find a depression at the posterior, interual corver.

The basisphenoid is the smallest emanial bone, I-slaped, median in position, and lies between the prouties and alisplenoids on the cranial flonn. Tho median vertical process is laterally compressed, and is mited to the pirasphenoid, thas dividing the month of the myodome into two. In the Scombrida the median process is very long, narrow, lut in the Cybiide and Plecostei it is rather broad.

The epiotics form the dorsal posterior part of the periotic capsule, lying ou both sides of the posterior part of the suproceipital, and interior to the exoccipital. They are joined posteriorly to the exoccipitals with a rather straight suture, externally to the pterotics, and anteriorly with the parietals, and sometimes with the sphenotics. In the inner side of the cranial carity, the epiotics are bounded by the supraoceipital, prootics, and exoccipitals, and sometimes by sphenotics as well. They have each a rough prominent epiotie process to unite with the flat dorsal process of the posttemporal. The epiotic process is continuous to the temporal crest; but in Scomber the process and the crest are separate. In the Scombrida the epiotics are markedly prominent as the external posterior ridge of these bones is rertical as in the Serranidio and Carangida; but in the Cybida and Plecostei the ridge gradually slopes downward and ontward. In the Cybiidse a deep groove or a camal is often found in the internal side of the epiotic to receive the anterior semicircular canal of the auditory organ. In Katsuwonus we find atriangular process in the internal side of the epiotic to sepurate the dorsal part of the anterion semicircular caual.

The pterotics are rather thin, more or less elongated bones, forming the lateral posterior corner of the sknll, at the corner the lowes are pointed, and more or less produced posteriorly to form the pterotic process. On the reatral surface the bones have a large facette for the articulation of the posterior portion of the hyomandibular. There is a protuberance or a process in the midway of the external margin. Anterior to the protuberauce the bone forms the posterior part of the outer cramal erest. In the Scombrida and Cybida the pterotics are flattened and comparatively narrow in the rentral side, but in the Plecostei a special process is produced at the inner anterior comer of the hyomandibular facette, below the ventral groove of the skull. The lateral posterior corner of the pteroties is much produced in the Katsuwonide; but the process is not distinct in many forms of the Cybiide.

The prootics, are seen from the rentral side of the skull ouly. They meet very firmly at the ventral median line of the brain-capsule. They are bounded by all the cranial bones of the brain-capsule, except the parietals and the smpraccipital. They are very irregnlar in shape, and rather large. In these bones we can distingnish two lamelle, horizontal aud rertical. In the Scombride and Cybidio the rertical limellab is nearly smooth and oblique; but in the Plecostei the rertical lamella is high, more or less twisted, and is moreover divided into two parts. These two parts meet in a line over the foramen jugulare in the Thumidas; but in the Katsuwonidae they are not two independent processes in difforent phanes, and there is no foramen jugulare. These bones form the wall of the medtullia oblongatia and also receive the rentral and nearly horizontal purt of the anterion canal of the anditory organ. Generally speaking the bones are more or less flattened exte iorly, hut there are two or three deep groores on the imer side to receive the greater part of the auditory organ. The foramen jugulare lies npon the lorizontal lridge. In the Scombridio and Cybiide the prootics take no part in the formation of the lyomandibular cup).

The exoccipitals correspond withont doubt to the nemal spine of the rertelra and protect the anterior end of the spinal cord, eliclosing the foramon magnum. Early exoceipital has a large paraoccipital condyle. The lones may le seen from the dorsal and ventral sides of the skull. They are bounded by the epiotics, opisthoties, prooties, and basioccipital, and sometimes a little by
the supraceipital aml pterotios. lidell exoceipital diveroes interiorly, aml extends also laterally in the Plecostai. . In the Sermbridio and Giromm dorcymes there is an impression of the chavicula ligament on the bone. In the C"ybidat and Plecostei the bone beas, on the donsal side, an muxiliary internascula Inne near the fortmen magnom, and sometimes anothre aniliary one in a little anterion and superior position. On the ventrul side there is a large foramen for the exit of the varge. The the Katsumonidan the exoccipitars wre fnsed at the dorsal wargin to form it prominent dorsil merlian crest, which lies just below the supraceipital arest. 'The exoceipital erost is hest developer in Auxis. On the iuncr side of the exoccipital, there are two on three groores anterior to the origin of the spinal cond to receive it put of the anditory organ.

The opisthotics are always found in the su-called scombroid fishes, and are generally seen from the dorisul as well ats the ventral side of the skull; but in the Scombridie they do not ippear at the donsul side of the sknll, exeppt the artieulating kuoh for the prostemporal. These bones lie on the exterior side of the exoceipitals, aud are hommed by the prootics and pteroties on the auterion aud exterion sides. Ther form a part of the pesterion wall of the brain-case. They lave a large rongh process for the articalation of the hollow end of the lower process of the posttemporal on the dorsal side.

The basioccipital is a bone with it concave oecipital condyle lxhind, and a very deep concarity on the opposite side, lying just below the floor of the formmen magmm. The bone is bounded almo by the exoccipitals, in front by the prootics, and ventailly by the parasphenoid. In the Scombride and Cybidio it is a narrow bone with nearly parallel henizontal sides in the lateral view. In the Plecostei the bone is producet ventrally below the horizm of the rertebral column. This is easily mederstood if you compare the sideview of skeletons of difierent families in the accompayying plates. The expanded lateral wings of the basisphenoid orerlap the posterion end of the parasphenoid from outside, protecting the parasphemidal elmmer.

The masals ture more or less elongated flat bomes, firmly joined to the anterior margin of the frontals, aud the anterior end of these bones rests on the palatiues.

The prenbitals are also flat, elongated bones with an articulating surface
at the dorsal margin to fit to a laterol rentral process of the prefrontal. The dorsol margin of these bones is rather thick, but the ventral margin is rery thin. These boncs protect the lower side of the eyes.

The suborbital ring of bones is more or less conspicuons in the Scombridr, but in the other gronps of the so-called scombroid fishes the ring is inconspicuous, as the bones of the ring are not much differentiated from scales on the check.

Jaw Bones.

In the Scombroid fishes the premaxillary is a long, curved bone, with a long thick head. The bone becomes gradually narrow behind, and without any marked prominence or groove. In the Scombridie the bone is very thin, slender, and its head is low and blunt. In the Cybiide it is massive, and its head is also low. In that family in general the anterior end of the premaxillary is sharply pointed and the dorsal tip of its head is oblique and printed. In the Plecostei the anterior liead of the premaxillary is large, blout, and thick, while the remaining part is laterally compressed, and comparatively narrow.

The maxillary is also a long, curvel bone with a thick hollow head, lying on the promaxillary. The shaft of the bone is thin and narrow at the posterior end, but thick and grooved at the anterior part. In the Scombridio the maxillary differs greatly from that of the other scombroid fishes. The head is small, its excaration shallow, while the shaft is miformly flat and broad, and has an indentation at the posterior ventral margin. The dorsal as well as the ventral margins of the bone are trenchant. In the other scombroid fishes the dorsal margin of the maxillary is gonerally romded. In the Cybiidzo the head of the maxillary is generally low, groored at the rentral side for the greater part, and the posterior end of the shaft is broad and flattened. In the Plecostei the -maxillary has the head thicker and larger, and the dorsal margin of the shaft is trenchant in the middle, the ventral margin move or less grooved. The anxiliary bone to the maxillary, cabled jugal by Masterwas, is very small, narrow, and insignifient in the Scombride; but in the other families of the scombroid fishes it is comparatively large and brond. It is pointerd at the anterior end and attached to the dorsal posterior corner of the maxilhary:

The palatine lies on the external side of the romer and hokls the haw of the maxillary fast, with the bent and nearly lifurcated anterior emp. In the Seombridie the bone is nearly flat in the plane of the mesopterygoid ; lut in the other scombroid fishes its fice rentral margin is gemerally amed with teeth on a ridge, projecting and more or less vertial t, the principal part lof the palatine, and also to the plane of the mesopterygoid.

The pterygoid is gencrally a T -shuped bone, united to the palatine with a slender horizontal shaft. The posterior end is expanded and juius to the inuer side of the metapterygoid and qualrate, with a rongh surface.

The mesopterygoid is a flat thin bone united to the palatine ant pterygoid, and rests on the parasphenoid with the internal fiee margin. s: It is wery remarkable that the bone is armed with an elliptical patch of : villous teeth at its centre in the Thmmide, as the bone is not armed with teeth in other fishes.

The lyomandibular is a stout bone, with a broad upper portion, and it more or less rod-like lower portion. The broader portion has thee conspienons condyles, of which the anterior and middle are for the cranium, and the posterior one for the operele. In the Scombrida the hyomandibular is broad,

Fig. B. External view of the hyomandibular. 1, Scomber jupmicus; 2, Acanthocylium solandri; 3, Cybium niphuniun; 4. Surda orientalis; 5, Neolhunnus macroplerus; 6, Falsurconus pelamis.
and the anterior margin of the upper broul portion convex and entire. The condylar protuberances are rather small, not prominent, the anterior one searcely produced beyond the broad lamellar part, but the posterior one remarkahly ontstretching lehind. Moreorer these protuberances are nearly in one plane. The stem of the hyoman libulaty is grasped by the bifureated end of the metapterygoid. Th the Cyhiida the upper partion of the hyomandibular becomes narrow, and the anterior condyle is conspicnously produced beyond the lamellar portion. The lower portion is rud-like, and the exterior longitudinal ridge for the attachment of the preopercle is rather prominent, aud is produced sometimes berond the dorsal margin of the broad portion. The posterio: condrle approaches the midtle coudyle, and the former is more or less turned exteriorly. A small pointed process is fomud behind the middle condyle in the scombroid fishes, except in waekerels. The anterior rertical margin of the npper portion is free; but its lower margin is horizontal and dentate for tho artionation with the metapterygoid. In the Plecostei the lamellar portion has become very narrow, but the lower articulating margin for the metapterygo.d is broad, so that the lower margin greatly projects. The lower portion is hent a little formard, and is flat and broad, especially in the gems Auxis. Tho exterior posterior longitudinal vidge for the attachment of the preoperele is obligne, and does not reach the dursal margin of the broal part. The small secondary ridge is reveloped behind the first, an l below the posterior condrle. The last condyle is best developed aud is turned exterionls. The process arrying the anterior condyle is more or less rumalish in coss-saction in Thunnus; but more or less flattened in Prarethomnus and Neothennus, and in the Katsumonide the process is turued at the dorsal and rentral margins. The bwer half of the lyomandibular is broud, thattened, and wery thin in the Katsuwonide.

The metapterygoid is a lnowd bone, with the dorsal end bifureated to Grisp the stem of the hyomandibular, and borders the quadrate with a broad, smooth margin, being connceted with a narrow intarrening cartilage. The shape of the bone differs only a little in different kinds of the seombroid fishes. In Rustrelliger this bone is attrehed to the pterygoid. In Scomber the inner branch of the boue exteuds even orer the preopercle. Generally spanking the bifureation of the bone is nut conspienoms in the Cybiide. The
motipterygoid and quadrate are firmly connected by the intervention of tho pharygoid and symplectic, with which they maite with zigzag sutures at the inner side.

The quardrate is a flat triangular bone, with a stont, movable, saddleshaped joint at the anterior angle t, articulats with the lower jaw. At the lower side there is a shallow groove to receive the lower, anterior portion of the preoperele.

The symplectic is a small hone, styliform at the anterior portion which is wedged into the lower part of the quandrate, more or less flattened at the posterior part, but thickened at the lower margin, and connected with the lower end of hyomandibular ly a cartilage.

The articular is a stont hone with a long pointed middle process which is partly sheathed in the dentary, two diverging processes at the dorsal and wentral sides, and a large concare articulating surface for the quadrate, above the knob at the hind end.

The angular is a very small lowe, firmly joined to the lowor posterior comer of the articular.

The dentary is laterally compressed, forked behind, and always carries ouly a single row of tecth at the trenchant edge. Tn the Scombrida the two bramehes diverge behind, the lower branch being equal to or a little longer than the upper branch. Noreorer the lower branch is broader then the upper in Scomber. In the Cybiide the bone is comparatively namow, not diverging, and the lower branch is rather shorter and narrower than tho upper, exeept in Sarda and Gymmorerda. In these genera and also in the Plecostei the bone diverges; but the lower branch is narrower than the upper, and the two branches are nearly equal in length.

Opercular Bunes.

The opercle is a flat bone, more or less trapezoidal in form, articulating to the hyomandibular, and is situated behind the preoperele, and above the subopercle. The operele is rather larger, as the gill-opening is rery wide. The anterior angle of the bone is famed by the articular enp for the hyomandibular, and the posterior angle is the dorsal eod of the line of union with tho subopercle. Generally the dorsal and rentral anterior margius and the diagoual,

Fig. C. External view of the mercle. 1, Scombte jupmicus; 2. Cybium nipionim; 3. Sarda orientalis; 4, Gymnosarile nuhs; 5, Thumus orientalis; 6, Auxis moru.

Fig. D. External view of the suboperele, 1. Scomber japonicus; 2. Cybium niphoniam; 3, Sards orientchis; 4, Gymnosarda nudu; 5, Thunmes orientolis; 6, Neothumus macropkerus; 7, Tutsuronus pelamis; 8, Auxis maru.
conmeting the anterior and posterior angles awe strongthened by thick ridges. In the Sombrida the operele is thin, rather namow, and the lower angle is acute, while the uper and posterior angles are rounder. The dorsal posterior side has an indentation just athore the posterior angle. The dorsal portion i.e. the portion above the horizontal diagonal is smaller than the ventral portion. The atienkar eap is more or less romaded with a slarp troth at the anterior dorsal margin. In the Cybidaw the operele is rather broad, and more or less pentagonal. The dorsal portion is smaller and thinner than the ventral. The dorsal angle is rounderl, and the posterior sides are more or less sempated. 'Ithe rentral anterior side is not straight. The articular cop is mamow and elongate. In the Plecostei the operele is thin hut firm, and nearly quadrate in form, so that the dorsal and ventral portions are nearly erpal to cach other. The dorsal anterior side is concase. The articular cup is ellipsoidal.

The subopercle is more or less triangular, its upper side being overlapped by the opercle, and the anterior side by the interopercle, while the posterior side remains free. In the Scombride the subopercle is very narrow, and bifurcated at the dorsal end. The anterior branch is short and pointed. In the Cybiida the bone is broad, its anterior branch is also brond and sometimes two-horned, exapt in Sarda and Gymnosarla. In the Thumnidao the anterion branch is abortive and the whole boue is nearly obovate. In Thunnus orimialis and also in Th. thynnus of the Altantic, the subopercle is more or less crenulated or concuse at the anterior margin; but in other tumnies the auterior margin of the subopercle is convex. In the Katsuronida the inturior branch is prodnced anteriorly and nearly horizontally, ending with a blunt end.

The interopercle is an orate bone, forming the rentral free margiu of the gill-cover with fine semature. The bone is connected by it liganent to the pasterior end of the lyoid arch. The interopercle of Thanmus orientalis luts its posterior margin convex, while that of the other Japanese trmnies hirs its posterior margin nearly straight.

The preopercle is a large bent bone, of which the rertical limb fits closely against a groove of the outer margin of tho hyomandibular, and the horizontal limb to the metapterygoid and quadrate. In the Scombrida this
bone is the largest opercular bone, broadest at the middle, and tapering gradually and nearly equally towards both extremities. In the Cybiida the horizontal limb is wide near the dorsal end. In the genus Cybium the preopercle is very broad at the lower pasterior angle. In the Thmnidre the horizontal hmb is well dereloped; but smaller than the rertical. In the Katsumonidæ the horizontal limb is better dereloped than the rertical, and both limbs taper nearly equally towards the extremities. The posterior and rentral margins of the opercular bones are attenuated and roll inward when dried.

Hyoid Arch.

The glossolyyal is it small median bone, embedded in the substance of the tongue, with a narrow cartilage at the broad anterior end. In the Scombrida the bone is especially small, and more or less spatulate. In the Cybiidæ the bone is generally rod-like, thick at the proximal part; but iu Sarda orientalis it is spatulate. In Gymnosardu nuda the glossohyal is nearly covered from both sides with the iuner edge of paired semicircular dentigerons ossicles. The front margin of the glossohyal is nearly straight in the Plecostei. In the 'Thumnidæ the glossohyal is spatulate, slightly concare abore and below, and constricted at the posterior end. In the Katsuwonidæ the boue is also spatulate, slightly concave in the cross-section.

The hypohyal forms the symphysis with its fellow of the other side

Fig. E. External view of the hyoid arch. 1, Rastrelliger chrysozonus; 2, Scmber japonicus; 3, Acanthocybiun solandri; 4, Cybium niphonium; 5, Sarda orientulis; 6, Gymnosarda nuda; 7, Neolhunnus macropterus; 8, Kalsuconus pelamis.
behind the glossolyal, and is composed of two pieces, upper and lower. Tho former is nanrow, white the latter is broud. In the Scombrita the lower piece las a puir of processes at the posterior margin, growing just in opposition, to grasp the anterior end of the cemtohyal. The immer process is broader than the outer. In the Cybiida the lower piece rest purtly on the anterior lower process of the ceratohyal. In the genus Cylium the posterior upper comer of the upper piece is produced to a pointed process. In tho Thmnnidio the mpper piece is largely corered by the lower piece from the exterior side. The posterior margin is nearly straight. In the Katsuwonide tho lower piece has a posterior process which fits tightly to a horizoutal slit at the anterior part of the ceratolyal.

The ceratohyal is it long flat bone, broader at the posterior end. Four anterior branchiustegals are atteched to this bone. In the Scombrida and Cylium, the dorsal surfice of the ceratohyal is nearly straight, while in the other scombroid fislies it is coucare.

In the Scombridio the anterior margin of the ceratohyal is nearly staight; but in the other scombroit fishes this bone has a long process from the anterior lower margin. The ceratolyal is muited with the epihyal by means of m:ny fine tectin from both bones, and also tho curtilage lying between them. The teeth are larger and more numerons on the inner side. On the external side and near the upper margin there is a narrow groove to receire blood-ressels. In the Cybiida the ceratohyal muites with the epihyal by means of long tecth on both the inner and outer sides, except in S wda and Gymnosarda. In the latter genera the outer teeth are not found. The groore for blood-ressels is distinct, and sometimes it part of the groore is pierced, as in Cylizem niphomium and Gymnosarda murla. In the Ihnumidse the tooth-like processes for the articulation with the epihyal are found on the inuer side only, as in Simele and Crymmosarla. At the rentral margin we find two or three projections, which are ineonspienons in the Cybiidæ. The vascular groovo is indistinct, but in Thummes and Parathunnus a slit is found in the place. In Nertlemmes a grose or a slit is hardly visible. In the Kiatsuwonida tooth-like processes for articnlation are found ou both sides. No slit nor groove is found. Tuoth-like processes at the rentral margin are rather conspicuous.

The epihyal is a flat, triangular bone united anteriorly by means of long and fine tooth-like processes with the ceratohyal, and posteriorly with a joint to the stylohyal. This hone carries thre brauchiostegals. The rascular groove near the upper margin is distinct in the Scombridx and Crliidx; but indistinct in the Plecostei. The bone is short and broad in the Plecostei, especially in the Kintsuwouidre.

The interhyal is a small bone, comnecting the hyoid arch throngh an interrening eartilage with the hyomandibular and the symplectic. In the Scombrida the bone is styliform, more or less flattened below, in the Crbiida broad and more or less flattened, in the 'Thunnida flat, nearly triangular with a lamellar extension on the posterior side, and in the Katsuwonida flattened, and more or less rectangular in shape.

The mohyal is a median, laterally compressed, elongated bone gradually widening posteriorly: It is joined to the hypolyals at the anterior end, but free at the posterior end, fumishing a surface for the attachment of the muscle of the isthmms or the throat.

The branchinstegals are flat, sleuder, cured bones, spauning the membraneous fringe at the month of the gill-slit. They are seren in number, and are louger, browder, and more curved posteriorly.

Branchial Arches.

The branchial arches support the gill-lamella, and are situated below the cranimu, onclosed within the hyoid arch. The general aspect of the branchial arches seems to differ ouly a little in different groups of the scombroid fishes; but if we examine these arches more closely, the difference amoug the different groups becomes very distinct (fig. F).

The basibranchials (fig. G) consist of three ossicles in a linear series aloug the median line. The first is joined to the ceratohyals of the hyoid wroh by morns of a cartilaginons front end. The second is generally shortest, and the thind longest. The second has an oblique groove on each side for the attachment of the first branchial arch. The third assicle has also an oblique groove for the attachment of the second branchial arel near the anterior end. In the Scombrida the basibmuchials are narow, laterally compressed, and more or less straight. The groores for the attaclment of

Fig. F. Dorsal view of the branchinl arches, and the sile view of a detached gill-raker.
branchial archos do not reach the clorsal margin of basibranchials, so that the upper margin of the basibrachials is ligher than that of the I rauchial arches. In Scomber juponiers the first basibranchial is nearly so short as the second, and is bent a little downward. In Rustrelliger claysozomus the first lasibranchial is the longest, strisight at the dorsall margin, while the second and third are short and nearily equal in length. The third ossicle is bent downward at the posterior half. Th the Cybiida the groores for the attaclment of brachial arches reatel the dorsal margin of the basibrauchials. The auterior end of the first basibrauchial is more or less thickeued. The secoud is bent downwarl at the middle. In the Thmnnide the groose for the attachment of brauchial arches are rery deep and reach the dorsal margin of the basibruchials. The third kasibrauchial is horizontally flattened. In the Katsumonidae the hasibrauchials are laterally compressed and narrow. The anterior half of the first basibranchial asceuds, and the thind is bent downward near the posterior end.

The branchial arches are armed with rillons teeth, densely growing on

Fig. G. Dorsal, Iateral, and rentral views of the basibranchials.
small calcareous pieces on these arches. In the Scombrida the upper, anterior part of the basibranchial ridge is almost naked, being protected with a few calcarcons dentigerons pieces. The villous teeth on the pharyngeal bones are nearly equal to those on the branchial arches, contrasting to the coarser teeth on the former in the other scombroid fishes. In the Cybidio dentigerous pieces are arranged in two rows, meeting at the dorsal median line of the branchial arch. In the Plecostei two rows of dentigerons pieces meet near the interual comer of the branchial arch.

The hypobranchials are short, joined to the sides of the second and third basibranchials, and are groosed on the onter or rentral side. They are not fonnd in the fourth arch.

The ceratobmachials are very long, subequat in length, more or less curved upward, and groved on the ventral side. They are uarrow in the Scombride, and nartow and compressed in the Cybiidx, especially in Acanthocylium. In the Thmmide they are more or less compressed at the anterion portion, but rather flattened at the posterior. In the Katsuwonidio they wre more flattened.

The epilnanchials are short, much curved, and ofton twisted. They are rather elongated in tho Cybiida. The curving and twisting of these ossicles are remarkable in the Scombridac but they are rather elongated in the Cybiida.

The upper and lower pharyngeals are hroad in the Scombridac, but in the other scombroid fishes they are narow.

Pectoral Gimdle.

The pectoral girdle consists of a scries of momlnane bones, connected with the skull at the upper part, forming the auterior border of the abdominal eavity, and at the same time supporting the pectoral fin, it receires the hypasial portion of the lateral muscle from the cephalic regiou and some succeeding anterior myotomes.

The post-temproal is a small forked boue. The dorsal branch is flattened and rests on the epiotic, while the vontral branch is articnlated to a median knob of the opisthotic. Tho rentral branch is round or oblong in crussscetion and hollow at the anterior end. The branch is produced to a short process posteriorly. In the Scombridae we find a long free bifid process between the dorsill and veutral branches and exterior to the dorsal branch.

Iu Acanthocybium a similar forked anxiliary process is found, party attached to the exterior side of the dorsal branch. In the other forms of the Cybidide, the amxiliary process is not fonm, and the cross-section of the rentral branch is oblong. The dorsal and ventral processes are connected at their root with a thin lanella. The posterior lamellar portion of the bone is produced forward very little. The interior ridge, continuous to the rentral branch ends with a free point in the genus Sarda.

In the Plecostei the post-temporal is well developed, and the interior ridge continuous to the rentral process ends with a free prucess. In the Thumidao the rentral branch is thick and rounded in cross-section. The lamelliar portion
has the front margin nearly vertical. In the Katsuwonida the lower anterior corner of the lamellar portion is well produced, except in the genus Euthymnus.

The supraclavicle is a small elliptical bone, more or less pointed at the anterior end, and thickened at the lower margin. At the auterior part this bone fits between the posterior process and the lamellar portion of the posttemporal. The principal part of the suprachavicle rests on the dorsal extended part of the clavicle. On the imner side of the neck of the supraclaricle a stiong ligament, which I shall call the clavicnlar ligament, is inserted with a broad attachment. The ligament connects the axial skeleton with the pectoral girdle. In the Scombride the anterior neck and the exterior vascular groore are not conspienons; but the inner ventral ridge is well dereloped. In the Cybiido the neck is not distinet, except in Sicla, neither is the inner rentral ridge well developed. The vascalar grone is faint and found in the anterior median part. In the Thmmide the neck and the inner rentral ridge are very conspicnous. The shallow, rascular grove is found at the posterior lower margin. In the Katsnwonidre the bone is nemly the sime as in the preceding family; the rascular groove is deep and couspionous. In Euthymus and Auxis, moreover, a large tendon is inserted just behind the attichment of the clavicnlar ligament. The tendon is the teminus of a bypaxial small cone of some anterior myotomes, abont fire in number. Thus the supraclaricle is connected to the axial skeleton with is strong straight, transverse ligament, and indirectly with a hypraial, longitndinal tendon.

The clavicle is a large curved bone, brow at the dorsal end, thin and pointed at the ventral end. The main stem consists of two wings, the exterior and interior, which meet at the anterior margin. At the dorsal anterior comer there is a pointed process. In the Scombride the exterior wing is nearly vertieal to the interior wing at the anterior part, and the lower anterior extremity is turned more or less externally. In the Cybiidæ the exterior wing is wide, and is bent backward with an acute angle, and the pusterior margin of the exterior wing is parallel to the interior wing. The anterior margin of the bone is mostly rounded. In the Thumido the exterior and interior wings meet in an angle approaching a right angle, and the exterior wing is not well developecl ist the lower half. The exterior wing is prodnced interionly beyond the auterior margin of the bone, at the dorsal part, with the same inclination. In the

Kintsumunda the: exterion wing is menly vertion to the interior wing, and there is a groove along the extemal margin of the exterime wing.

Between the painted process and the posterion landler pant of the dorsal and of the clavide there is a nanow slit, through which the trimsterse Clasvenlar ligament, binding the axial skeleton with the suprachavile passes. The posterion margin of the printer provess is romaded and smonth. To the
 of the hinad dorsal end of the clavicle.

The hypercoracoid is a small flat bone inticulated to the clavicle at the upper, interior side, and has it round foramen near the centre of the bone. The hapenemenid is miter to the hypercoracoid above ame als: to the clavicle at the dowsul auterior cormer. Lu the Scombride this bone has an external Jongitndinal keel, and the fower stylifom process is long ind namow. In the C criiilae the bone is broad and has a

Fig. H. Esternal view of the left lower piece of the nostclavicle.

1, Scomber jusmices ;
2. C'ytuem nipthoni-bn

3, Thurnes orientalis;
4, Fiatsuromis julumis. median longitudinal groove, or rather the bone is bent externally along the longitudinal axis. The lower process is ratlier broad. In Cylum and Sarda the central foramen is very small, bont it is large in Acrentlocybium and Gymnosciurla. In the Plecostei the lower process is broad, miformly thin, and folded more deeply than in the Cybiidae. Four actinosts basalia or brachial ossicles are fund upon the hypercoracoid and hypocoracoid to support the pectoral fin. They become larger as they approach posteriorly. In the Scombridare there is no formen betreen the last ossicle and the dorsal posterior process of the lypercoracoid; but in all the other scombroid fishes we find it foramen there.

The postclaricle is composed of two pieces of bones, and protects the
dorsal posterior base of the pectoral fin. The upper anterior piece is lamellar, more or less kidney-sluaped in ontline, and is bent near the rentral posterior end. Its rentral margin concare, and the dorsal convex. The lower posterior piece is rather broad and lamellar at the anterior part, generally with an ascending pointed process, and a long styliform process behind. This lower piece (fig. H) has moro characteristies in different forms of fishes than the upper. Th the Scombridae the lamelliform portion is comparatively large, and the styliform process suddenly narrows and bends upward. In the Cybiidae the styliform process is rather broad and straight, while the lamelliform portion is rather small and flattened. In the Plecostei the lamelliform portion makes an angle with the styliform. In the 'Ihnnnidae the angle or the bent portion is raised and thick, and the styliform portion vers short. In the Katsuwonidae the stylifom portion seems as if joined to the lamelliform portion, at the inner side near the rentral margin. The sty-lifurm portion is long.

Pelvic Girdle.

The so-called pelvic girdle is a pair of bones united at the median line, imbedded free in the rentral puit of the abdominal wall. Each bone consists of three parts:-anterior, external portion; anterior, internal portion; and posterior styliform portion. The first named portion is largest, and serves for the attachment of muscles. The last two portious meet, with roughened surfaces, their fellows of the other side. The portion of the pelvic girdle where the rentral fins articulate is thick and transverse. The anterior external portion is most well dereloped and most complicated. In the posterior half of the portion we distinguish three wings;-external, intermal, and rentral.

In the Scombridae the pelvic girdle is quite small. The anterior eaterual portion is elongated and bent npward, with its external and internal wings meeting in one plane. The rentral wing is short and small. The anterior internal portion is thin, slender, and has nearly the same leugth as the rentral wing. The posterior styliform process is also very short. In the Cybiidae the anterior exterual portion is long and straight, more or less vertieal at the anterior part, and the cross-section of the posterior part is trimatiate. The anterior internal portion is short and slender, abont one-thind of the extermal

Vertebral Columa.

The gencral feature of the vertebral colnmn of the different types of the scombroid fishes may ansily be understood by examining Plate NIV, showing the middle transrerse section of vertehrac.

In the Scombridae (fig. 30) the number of vertebrac is not large, being 31 in total, and the number of the precaudal vertebrae is mearly the same as that of the candal. The vertebrae are smanl, longer than broad, nearly equal in size and form, and are articulated with each other rather loosely by means of short, small zygapophyses. In Sconter jopmicus, lowever, the anterior zygapopliyses, both superior and inferior, are very broad in the caudal rertebrae, and their anterior margin is divided. The articulating surfaces of the first rertebna with the skull are two, separate, and tumed axially, just opposite to the ordinary case. Thus a pair of stout processes at the dorsal corner of the first vertebra grasps the posterior end of the basioccipital (fig. 30, C). The nemal spine is nearly equally slender, througlout the whole length of the vertebrial chlmm, and the first spine is mever free. The anterior concavity of the vertelura is a little shallower than the posterior. The nenral and haemal spines are nearly straight, oblique, and generally they are compressed anteroposteriorly. The parapophyses are not developed, and the haemal spine is scarcely developed in the precaidal region. Almost all the precandal vertelnae have their neural canal divided into two. The lower canal is for the spinal cord, it is entirely covered by a bony roof, separated from the upper camal for the dorsal ligament. The lateral transverse vidge in the anterior precandal vertebrae is quite peculiar to this family (fig. 7). The last vertebra is not fused with the hypural boues.

In the Cybiidae the total momber of vertelnae is rery variable, generally over forty. The least number of them in my collection is thirty one in the srems Grammatorcyurs, and the maximm momber sisty fome in Acanthoylium solambri. The relative number of the precandal and candal vertelrite also varies. Gencrally the precaudal vertelraw are less in ummber than the candil. In Acanthocylium solandri and Surda oricutalis, however, the precandal rertehnae wre more umnerons, while in Sartu cletensis and Gymnosards mulu the number of vertelme in both rexions is exactly the same. Vertebrae are generally very short, disk-like near both estromities of the body (fig. 41). In most rertebrae
 pairs of lateral frooves (figs. S-12). The wertehral colmmo of Aconthondbium solundri (firs. 10, 39) and Cylium liorcentem is different from that of the dher forms in hariug thee lateral groves instem of two. The first nemme spine is not alwars fused to the centrmu, nor forms a complete ring at the proxinal part, for the spiual cord. In the geuns Sarle, lewerer, the detachable nemral spine of the first vertebra forms a complate ling, leing fusel at the lower end. Sone anterior nemal spines are boad aud strong. The other memal and latemal spines are slender and weak, and in the middle of the bucty they mite to the centrman of vertelnae ahuost perpenelicularly at least at their insertion (figs. 39, 41, 42), except in Cybum chinense (fig. 40). They are not compressall laterally. The last rertehra is coaleseal with the hapural bones and fomos a lozenge slaped bove, with a small metian noteh at the posterior margin. Trausverse processes are not dereloped, lut limmal processes and haemal spines of some length are fomd in many precaudal vertelne (fig. 38-42). Some of these spines are twoed anteriorly in Cylium niphonium and Gymmoscorder muda. The lypural process of the last fincmal spine is notably prominent, and the rertebate in tle candal peduncle are remarkably small, gradually narrowing luckwards, except in the gencrat Sorda and Gymmosarda. In these generia the hypural process of the last haemal spine is narow and the vertebrae of the caudal pertuncle are mot molified in size, but in form, becoming quadrate prismatic, with their nemral and hemal spines boad and flat, as we fiur in the Plecustei. These spines project backward nearly loorizoutally, aud firmly lay hold of the succeeding vertebra. In these vertebrae the lateral ridges are remarkably developed to the lateral keels (figs. 11, 12). In these cases the two vertelnae preceding the last vertebra are small aud flattened anteroposteriorly and are capable of lateral morement. The inferior forameu is developert in some caudal vertebrae ; but generally it is small and inconspicuons, espucially in the gemas Cydiom. In the superior zygipophyses both the auterior and posterior pairs are large. In the Scombridae and Cybiidae the haemal canal of precundal vertebrae is suddenly reduced in calibre in some auterior vertebrae. This is due to the exchusion of the cardinal rein from the hamal canal.

In the Plccostei the total mumber of rertebrae is thirty rine, except in the genus Katsutionus, which has forty-one rertebrae. The vertebrae are articulated
together so firmly that the rertebral column allows little motion to either side. The free lateral motion of the rerteloral column is possible only at the root of the caudal fin, where two rertebrae (the last but one and its antececdent) are remarkahly thin, and their nemral and haemal spines are long, diverging, and flattened at the root. Generally the number of the precaudal vertebrae is nearly equal to that of the caudal. The rertebrae are $18+21$ in the Thunnidae, 20 +21 in the genus Katsunoonus, and in the other genera of the Katsumomidas $20+19$. The relative number of the precandal and candal rertebrae is often mistaken, as the haemal spine is also very well developed in the precaudal rertebrac. Moreover, it is remarkable that the havemal spine of some anterior precaudal vertebrae is turnerl forward in the Thomidae (figs. 49-52, 64). In Auxis the epihacmal spine is also turned forward in the eandal region too. Thas Katsuronus has the same number of candal rertebrae as the Thumidae, and the number of the precandal vertebrae does not differ from that of the other genera of the Katsumonidae. In Güxther's catalogne less numbers of rertebrae are recorded; but this I am inclinet to belicre to be erroneous. Vertelrate differ greatly in shape and structure in the different parts of the body. They are much modified near both extremities of the body; but they are comparatively simple and light at the middle. It is noterrorthy that the haemal spine is very well developed in some precaudal vertebrae too, so that when ribs are detached it is rather difticult to distinguish them from candal rertelorae. However the haemal spinc of the precandal vertelrac is broad, thin and laterally empressed at the distal end, for the attachment of ribs, and it is of course shorter than that of the anterior caudal rertebrae. It must be noticed also that the haemal spine of some anterior procandal vertebrae is turned forward (figs. 49-52). Each vertebra has a pair of short pointed lateral apoplyses at the anterior margin of the insertion of the intermuscular bone, especially well reveloped in the candal vertebrac. These apophyses scrve to keep the intermusculars fast to the rertebrac. The four pairs of zrgapophyses are well developed, of which the superior prezygrpophyses are best developed. In the Thumidao the triansperse process is well doveloper in some precaudal vertebrae (figs. 13, 49-52, 64). On the dorsal surface of these transverse processes, the lead of the intermuscnlar boucs and ribs are inserted close together, the former preceding the latter. The lamemal conal is narrow in Thumus and Parathumms;
but in Neothamas it is nearly equal to or broader than the diameter of the vartebral columu, mil it is still wider in Katsuconus and Eulhynnus (figs. 57, g; $58, g)$. In the Fatsumonilue the camal is separated from the vertebral column hy the development of a preuliar mexian process which I propose to name as the epihnemal process. These processes as well as the neural, and haemad processes are more or less laterally compressed. The neural and lanmal processes We greatly bent brekward near the distal ond in vertebrae of the middle pirt of the rertebral column. In Aucis the haemal eanal is not closed in the precaudal region. In Thummes and Purathewnes the hacmal canal is closed in the 10th vertebra; but in Neothumus in the 11th. In the Fatsuwonidae the caual is closed still further lnek:-In Katsuconus 12th, in Euthynnus 16th, and in Auxis 21st.

In the Thmonidae the first vertelura is rery short, aud is always muchylosed to the occipital rewiou with a zigzag suture, so firmly that many anthors orerlooked its centrum, thongh they found the detachable nomral areli belonging to it. The anterior margin of the first nemral spine is not straight, lut notehed. In the rertebre of the Thmnnidae the longitudinal groores are conspicuous, aspecially the lateral grooves. The rertebrae are massive, and are finely striaterl at the surfee, and the internal part is alveolar. The inferior formmen as well as the hacmal canal are very poorly develuped in Thunnus and Parcthumus; but in Neothumus they are well developed in caudal rertebrac. In this fimily the transverse process is dereloped from the fourth rertebra. It is well dereloper in the following three to five vertebrac, as a short, nearly flat process with a more or less trenchant edge. In the Katsuwonidae the first vertebra rliffers but little in size from the following rertebrae, and is less firmly anchylosed to the skull, and at the some time the relation between its centrum and the nemral process is much closer, not easily separating from each other. The lateral groores of the retebrae commmicate with each other near the axis in anterior rertebre of the precaudal region, and in Euthynnus and -Aucis (fig. 15) the ridges betreen these groores are poorly dereloped or disappanivg, thus the vertebral column is much more slender than in the tunnies. The wass of the vertebrae is greatly diminished, as the interior alveolar part is nearly lost, leaving the hard, cumpact, cortical layer ouly. The surface of the rertebrae is nearly smooth. The inferior foramen is enormonsly
developed, and is fomm in the preetudal region as well in Fitsunconus and Euthynnus (figs. 5r. 58); but in Auxis the formen is found poonly dereloperl and in a few posterior candal vertebrac ouly. In this family a pair of special protulucrances appear in a few anterior rertehrae. These protuherances lie just behind the superior zygapophyses, and they serve to furmish points of attachment to a pair of strong tendons of the lateral inusele.

In the Plecostei the netural aud haemal spines and other processes from rertebrae for the mutual artienlation are well developed. The nemral spine of certain anterior rertebre is broad and rongh for the insertion of muscles, and in bonitos the memral arch of these vertelrae is perforated with momerons pores of different sizes. The other ueural spines are long, slender, laterally compressed, and nearly rertical to the rertebral colum at their origin. The haemal spine is remarkably well dereloped in the precandal reyion in tumies; but in bonitos the spine is scarcely dereloned in this region. However a median spine of quite new origin makes its appenance in the Katsuwonidae. It was first described ly Stanes (69) muder the name of pedicle; but I propose to name it the epihnemal process. The spine is developed between the centrum and the hacmal process or the haemal arch, and is best dercloped in the posterior part of the precandal region. The anterior superior zygapophyses of anterior precandal vertebrac are long, more or less lent inward at the lower margin in the Thmmidae; lant they are more or less triangular pyramidal in the Katsumonidae, and there is an accessory zygapophyses as in the Scombridac. The anterosuperior zrgapophrses in the posterior portion of the vertebral column are elougated and flat, both in the Thumidae and Katsuwonidae; but in the latter family the accessory zrgapophyses are formed beneath the ordinary zygapophyses to clasp the posterior superior zygapophyses between these two zrgapophisses. In the Thumidae the inferior zygapophyses are short and pointed at the end, more or less diverging from the middle of a rertelna, and they do not come into close contact with those of the next reatelna, as in the Cybidae. In the Fatsuwonidae, lowerer, the inferior zygapophyses of a vertelna are long and in close contact with those of the next rertebrae.

Ribs and Lateracescular Bones.

The ribs are developed along the internal anterior margin of the precandal myotomes, ou both sides of the abdominal carity, rumning obliqnely backward, to a point where the myotome tums to bend anteriorly. Hence the length and the direction of ribs are determined by the internul bomardy lines of the npper portion of the lypaxial half of the lateral muscle. Generally the rils is developed from the third vertelrat and is united sither directly to the centrum or to the trausverse process, or to the distal end of the hremal process or the preeculal lanemal spiue. Ribs neur both extremities of the aldominal carity are short; but the other ones are nearly the same in lengtl. They are broad, and form the roof of the abdominal cavity, especially those at the anterior half of the series.

In the Scombridne the ribs are slonder, roundish in cross-section, nearly the same in shape and leugth, separated from each other, and reach quite near the reutral medinn line (fig. 1). The intermuscular bones form a series of slender lones betreen the epaxial and hypaxial portions of the lateral musele, and along the anterior surfice of the myotome. They are well developed, slightly curred in anterior precaudal vertelrae, their tips reaching the external surfuce of the lateral mascle, and are bent backward below the skin. The intermusculars are dereloped from the first vertebra to about the twentieth in Scomber joponicus. In the latter species the intermuscular bones are inserted just at the base of the luremal arch or process, and seren or eight anterior ones are long enough to appear on the surface of the lateral muscle. The tips of these long intermuscular boues do not overlap each other, and they are at a little distruce above the lateral median line of the body (fig. 1). In the other scombroid fisles tips of the intermuscular bones appear at the lateral mediam linc.

In the Cybiidae the ribs are generally slender, sukequal, and lie close to, but do not touch each other. In Acanthocylium solandri and Surda orientalis some ribs are very broad. Intermuscular bones are found between some cephulic myotomes too, and sometimes we find two pairs in the region, both on the exoccipitals. In the genus Acanthocybium the intermuscular bones except the first are attached to the head of ribs, as was observed by Starks, not on the ceutrum as in the other scombroid fishes, and in this genus ouly the first rib is found on the
second rertebra, instead of the third. In this family the tips of long anterior intermuscular bones overlap each other at the extemal suface of the lateral muscle. In Cybium the intermusclar bones are scarcely developed in the caudal region (fig. 6), and the anterior intermuscular bones are tumed more or less upward. In other scombroid fishes the iutermuscular bones almost lie in oue plane. In Sarda intermuscular bones are very well developed. They are thick and loug in the anterior precaudal region. In Acanthocylium solandri the intermuscular bones are ten in number, and are found in the preaudal region only; but in Sarda and Gymnosarda they are found in the candal part too.

In the Plecostei the ribs are broad, dorsoventrally compressed, and gradually attenuated towards the posterior, intermal side. They lie close to each other and do not hang down along the peritoneum, but they thatch the roof of the abdominal cavity. In the Thmmidae the proximal portion of one or two ribs, lying just before and above the root of the cutaneous artery, is very slender, so as not to obstruct the free passage of the bloor. In a large specimen of Thunnus orientalis I found that the fifth and sisth ribs consist of two parts. The short, slender, proximal part lies at the anterior slope of the hypaxial portion of the lateral muscle, which is rather suddenly developed from the myotome of the seventh rertebra. These are probably abuormal. The intermuscular bones are devoloprd from the cophalic region to the candal region, and they are mited to the lateral median line of the vertebral column, and each pair at the anterior margin of the centrum of each rertebra, except in the first vertebra, in which these bones are attached to the neural arch. These bones are long, slender, and their distal ends lie at the external surface of the lateral muscle in the anterior part of the borly (figs. 2-5); lut the majority of them have their distal end at the bomedary between the supericial dark red muscle and the profomed dark red muscle. The intermuscular bones found anterior to the serenth vertebra are long, and appear on the surface of the lateral muscle, while those posterior to the seventh vertebra become short rather suddenly, and in the case of Tintsumonidae the last two to seven of those intermuscular bones are divided into two portions (fig. 5); the part beyond the profound dark muscle is separate from the proximal part and these two parts are connecterl with a ligament. Intermuscular bones on the third and fourth vertebra are fused to the dorsal side of the head of the respuctive
rils, and mitert t thes vertehme. In the Thumidae the ends of some prsterior ribs lie cluse on both sides of the thick group of interspinous bons of the rual, aur in these the posterior pairs of one side run quite near their fellows of the other side.

Interspinocs Bones.

In the skeleton of the merlian fins of the scombroid fishes, we distingnish three types:-(1) that of the first dorsal, (2) that of the second ilorsal and anal, and (3) that of the dorsal and anal finlets. Each interspinous bous consists of the distal and proximal segments, and the latter segment is furnisherl with lateral-and sagittal wings. The first internewal is the longrest.

In the first dorsal, spines articulate with the proximul segment, behind the wide, dorsally bent distal segment. The posterior end of the proximal segment is also wide aud dorsally bent, behind the point of articulation of the dorsal spine. The exterior margin of these dorsally lent parts is often serrated. These dorsolly bent parts form the wall of the groove for the first dorsal fin.

In the second dorsal and anel, the interspinous bones are anteroposteriorly eompresserl, and the divided proximal end of spines or rays grasps the distal sergment, and articulates with the proximal segment.

In the region of the finlets, the interspinous bones are elongaterl anteropasteriorly, often with the development of the middle segment. The distal segment is very small, and is grasped by the prosimal ends of fin-rays, and articulates with the proximal segment.

Interspinous bones of the first dorsal and finlets are generally fornd one of each in each myotome, but those of the secoud dorsal and anal are generially tro in each myotome. No spmions interspinous bones before the first dorsal. The interspinons bone of the last finlet of the dorsal and anal wauts the proximal segment, and is attached to the posterior end of the proximal segment of the precerling finlet.

In the Scombritae the interspinons bones are weak aud narrow, and there are some spurious bones batween the two dorsals, one in every myotome, and the free lower end of the interspinons bones of the first dorsal are iuserted between the tip of the neural spine of precandal vertebrae. The anterior
interspinous bones are inserted more than posterior ones. In Restrelliger the interspinons bones carrying finlets hare their sagittal wings well developed.

In the Cybiidae the lateral wings of the first dorsal interspinous bone gradually narrow towards the dorsal end. The distal segment of the first dor:al interspinous bone is a very small round ossicle. Anterior interspinous bones are oblique, but those behind the middle of the rertebral column are more or less vertical.

In the Plecostei (fig. 44) the first dorsal interspinons bone is very well dereloped with the lateral wings turned anteriorly, and the anterior sagittal wing is rery broad, but the lower part not developed, terminating at the middle of the lateral wings at the axis. The distal segment in the first dorsal is broad and tmned orer upwad, and the dorsal posterior end of the proximal segment is also expanded laterally, except a few anterior interspinous bones. These expanded parts are tmued up, quite like the distal segments. Some posterior interspinous bones of the first dorsal are laterally compressed and want the lateral wings. In the second dorsal proper the interspinous bones are compressed anteroposteriorly and two of them are generally found in erery myotome, instead of one in the first dorsal. In the Carangidae two or three interspinous bones are found in one myotome under the first dorsal. In each interspinous bone the lateral wings are better dereloped than the sagittal wings. Jn the second dorsal the distal segment is a small narrow boue, inserted betreeu the bases of the two moieties of each fin-ray. The exterior margin of the lateral wings is streugthened by the development of accessory ridges. The interspinous bones of the anal fin differ more or less from those of the second dorsal, and rescmble rather the first dorsal. The first rentral interspinous bone is longer than the succeoding bones, and some anterior ones are fused together. Most of them hare wide lateral mings but the sagittal wings are not well dereloped. The lateral wings increase in midth towards the froe end, and suddenly converge toward the pointed extremity. Two of these interspinous bones are found in every myotome. Interspinous bones of the finlets are quite alike in the dorsal and anal. They are more or less rod-like in the Ihumidae; but they hare lateral as mell as sagittal mings in the Katsurronidae, and in tho posterior pirt the sagittal wings ouly are developed. The distal segment of the interspinons bones of the second dorsal and anal is rery small,
and is insertent betwoen the two moieties of the fin-ray.
The lateral margin of the distal segments and that of the dorsal postexior end of the proximal segment are mostly sermed in the 'Ihmmida, hot is straight and entire in the Fiatsmwonidae.

MUSCULAR SYSTEM.

I have chiefly examined the lateral mascle, the other mascles were scarcely tonchet. The great lateral miscle is originally composed of as many transverso serments as there are vertebrae, and each semment is attachect internally to the respective vertebra and its processes and appendages,-neural and lenemal processes, ribs, and intermuscular bones. The first threo muselesegments, howerer, do not correspond to the first three vertehrae, as these three segmeats belong to the cephalic, or rather oceipital region, where we find one or two amsiliary intermuscular bones between them, in the Cybidiue and Plecostei. These cephalic myotomes are inserted between the formmen magnum and the pterotic processes of the craninm, and connects the skull with the pectoral girdle. Hence the forrth muscle-segment or myotome corresponds to the borly-segment of the first vertebrn. Moreover, some myotomes scem sometimes to angment by sublivision, in fishos of the Katsuwonidac. In Auxis one or tro ausiliary myotomes are added in the hypaxial half. Generally one ansiliary myotome is added near the bonndary between the precandal and caudal portions. When there is another ansiliary myotome, it is found in the anterior part of the preandal region, where the cutaneons artery appears to the surface of the body. These anxiliary myotomes are not always bilaterally symmetrical. Noreorer two auxiliary myotomes are sometimes found in one side, and only one in the other. At the candal region some myotomes are coalesced and they are much elongated anteriorly. The myotomes in the caudal perluncle are united into one in the Plecostei, in the region where the lateral lieel makes its appearence in the vertebrae, and where the neural and hacmal processes are broad and horizontal. Thus in the anterior part of the adult fish, the number of myotomes is greater thin that of the vertebrac, and in the caudal region the number is reduced from the conflnence. The cephalic myotomes as well as some following myotomes project anteriorly as a triangula r mass, and their thin, dorsal hmb is bent forwards along the dorsal median
line orer the cranium. In the Plecostei cach myotome faithfully follows the comse of the neural and hamal processes to their ends, at the median longitudinal plane, not separating from them on the way, as is found in some telcostean fishes. Each myotome is bent in a zigzag lino on the surface of the Lody, and may be separated into four parts, right, left, dorsal or epaxial, and rentral or liypaxial. The two lateral halves of the myotome are well separated by a thick membrane, aponewosis, spmon the axial skeleton and its processes, and by the abdominal carity: The membrane is very thick in the Plecostei. The dorsal and rentral portions are separated by a membraue of comectire-tissue, connecting intermuscular bones, tendous, and ligaments.

In the Teleostei muscle-fibres ire generally well disceinible from ontside even in the last myotome (except in the genns Sarde); but in the Plecostei many candal myotomes are changed to tendons at the posterior, esternal surface (fig, 3). 'Therefore the extremity of the caudal portion looks huish, when the skin is remored. In the Plec stei nearly eight last myotomes seem to be fused into one. In Auxis the tendon of the last myotome is enormonsly elongated anteriorly, reaching fire beyond the anus, to about the middle of the 17th myotome (fig. 2).

The muscular system, as may be supposed from other structures, is well developed and much complicated in the Plecostei and allied fishes. The course of the myotome rums at its external surface from the dorsal median line sharply hackward, then gently forward, and gently a little backward to the laterab median line; in the rentral half sliglatly forward, then, gently hackwird, and lastly sharply forward (fig. 3). The backward bend at the lateral mediam line is noteworthy in these fishes, in more primitive fishes the lond is not found at all. The hend is sharper in the anterior portion than in the posterior portion of the body. Indeed the zigzag course at the surfince becomes more sharply lent as the position of the fish advances higher, and at the same time the conical forward outgrowth of the myotome is more elongated. The epaxial conical outgrowth is longer than the hypaxial, and is much more reduced in thickness. Therefore we find many concentric circles of myotomes in the cross-section of the lateral muscle, 3 or 4 in the Scombridate, about 10 in the Cybiidice, and $10-$ 16 in the Plecustei (figs. 16-19). The backward bend of myotomes in the
epaxiad and hypaxial portions las some breattis in the Scombridue and Cybiidiw (firg. 6), therefore we find two parallel traces of comective-tisswe fibses, which comect firnuly with the vertionl aponemensis, ensheathing the axial skeleton from booth sides of it, just at the end of the nemal mad lememal processes, where the myotomes are very sharply bent. In the Plexustei, lowerer, ayotomes are very thin at the points of external bendiner and they are inserted to the axial skeleton at one line of trices. In Cyltum the number of cones of myotomes in cross-section of the lateral mascle is only a little more nunurous then in Scomber, but in Sarlue the mmber is almost as many as in the Thmmidie. At the auterior end of the borly the apex of the cones is nearer the axis them to the surface of the body; but in the candal portion it gradually approwhes the smface. In the Katsuwonidue (fig. 19) a part of some auterior myotomes envelopes a large tendinous chord from the second vortelara, or rather a part of some antorior myotomes forms a small anxiliary cone of concontric myotomes, which ends in a strong tendon attached to the second vertebra. In Euthynnus and Auxis mother smaller auxiliary cone of myotomes romid a tondon is inserted into the supraclavicle (fig. 2).

Tn the Scombridae and Cybiidio and also in the Katsuwonidae the dorsal and rentral limbs of the myotome are more or less wide at the insertion into the merdian septum; but in the Thmmidue the dorsal and reatral limbs of the myotone are very thin.

The dorsal limb of some anterior myotomes always reaches the front nargin of the frontals in the Plecostei, lunt in the Teleostei it is not always the case.

In fishes the median superficial lateral musele is generally darker in colom. Its extent is sometimes rery well defmed, bat sometimes more or less indistinct. It is thin and narow at the anterior part, but thick aud wide at the posterior. This dark coloured portion is triangular in cross-section, and is boumled by membraues of connective tissue, which are united to the line commecting the distal end of intermuscular bones. In the Teleostei tendons of the great lateral muscle are mostly found in the superficial dark coloured portion; lut in the Plecostei they are found in deeply seated dark colomed muscles. The deeply seater dark red portion of the lateral muscle is characteristic to the Plecostei. It is called "chiai" or "chimi" in our country, from very old times. In 1712 Ryosan Termima described "chisi" as being fomd
in two bands in bomitos and tunnies, and being inferior in taste to the ordinary muscles. In the Plecostei the ordinary flesh is remarkably reddish, as the special superficial segmentary canals send a copious flow of blood into it (fig. 3). The dark colour of the median superficial musele is due to the rich supply of blood from segmentary arteries along the intermuscular bones. The darker colour of the "chiai" portion is also due to the same cause, but from a different source.

In the Plecostei as the ordinary museles are red coloured, the median superficial muscle as well as the deeply seated portion romed the axial skeleton are nearly blackish red as they receive more blood than the ordinary muscle. The blackish red portion scarcely reaches the centre of the concentric circles in the cross-section of the lateral muscle. In timmies the blackish red portion does not reach the vertebral column in the epaxial portion, but in the hypaxial purtion it alwars reaches. This is well marked in the posterior portion of the body. The blackish red portion is thin and flat at the anterior part of the body, it then becomes gradually thick, thickest at the posterior part of the precaudal region and then being compressed laterally moves towards the surface together with the centre of the concentric circles in the cross-section. The boundary of the "chiai" portion is quite distinct. In the process of curing, the curer observes that the "chiai" portion is liable to separate from the surrounding portion. In the Katsuwonidre the epaxial portion also reaches the axial skeleton (fig. 19), and the liypaxial portion las a wide base for the insertion to the axial skeleton as the dorsal worta which supplies bloor to the "chiai "portion is more or less separated from the rertebral column by the development of the epilaemal process. In this family the posterior part of the superficial lateral muscle is not so dark as the deeper layer. This is due to the fineness of the entaneous artery in the posterior part. The slape and volume of the "chiai "portion vary in different species. In the Thonnidae, Thunnus orientalis has a comparatively large voluminons dark red portion, but Neothunnus macropterus has a small quantity of the dark red portion. In the Katsuwonidae the quantity of dark red portion is comparatively large, especially in Auxis which has about ono fourth of the lateral muscle dark coloured. In the "chiai" portion tendons are well developed, especially in the epaxial portion and in the caudal portion (fig. 2). In the Teleostei the most active part of the lateral musele seems to
lx: the mexian superficial part, while in the Plecostei it seems to le tho deeply suated "cluai" portion. In the Teleostei the dark coloured portion eradually lecomes broader and thicker in the caudal portion, passing beyond the limit of the modian superficial lateral muscle. I lave examined and found that thes dark red portiou contains abont 7 times as nuch blood as the other portion in Thumus orientalis, and abont 15 times as much as in Parathumus mebachi.
In Scomber juponicus the saperficial red muscle contains almost 8 times as much blood as the other flesh, and in Cybium niphonium the superficial red muscle contains 12-13 times as much bloot as the ordinary flesh, which is nearly colourless.

Histologically the dark red portion consists of uniform and fine fascicles, with many capillaries among them, and their mucle-fibres are filintly strinterl, more or less resembling the involuntary muscle-fibres. When the dried muscle of tunnies or bonitos are broken transversely, the chiai portion is rather rough and not lustrous, while the other portion is quite smooth and conchoidal.

In the Fatsumonidae the chini portion is better dereloperl than in the Thmmidae, and both the epaxial and hypasial parts of it reach the vertebral column, as the chiai portion has a wider base than in the tunnies, and as the sergmental blood-ressels nourishing the portion originate on each side of the dorsal aorta and its plexus at two points, a little above and more or less below the rertebral column.

To the rentral side of the vertebral column a pair of eylindrical muscles are inserted to suspend the pharyns. These muscles run obliquely formards from the rertebral column. These pharyngeal muscles are inserted into the 3rd and 4 th rertebrae in Scomber japonicus, to the 4th in Rastrelliger chrysozonus, to the 3rd

Fig. J. Cross section of the lateral muscle, showing the large fassicles of the ordinary portion on the right side, and fine dark coloured fascicles of the darl rel portion on the left.
in Grammatorcynus bilineatus, to the 6th in Cylium niphomium, to the 5th and 6th in Sarda orientatis, to the 5th in Gymnosarde nude, to the 5th in Thumnus germo, to the 5th and 6th in Thumnus orientalis and Neothunmus macropterus, and to the 6th in Parathumus melachi and Auxis.

In the Scombridae and Cyliidae weak sloort slender tendous are developed from the root of each horizontal apophysis obliquely formard along the border of each myotome and are firmly attached to the ventral side of the distal end of the preceding apophysis and intersect with ligaments ruming aloug those processes. In the Plecostei these tendons are much hetter developed, heing longer and more obliquely inclined, especially at the anterior and posterior ends of the loody. These teudons are split into two shats of fine fibres at the apex of the intermnscnlar bones, and the sheets ran dorsalward alung the axial sides of the superficial dark colourel muscle. These sheets are transfumed t, the myocommata. The lateral tendons are not fomd fron the middle part of the lateral keel in the candal portion.

Dr. Norio Ogata (5s) found that the alcololic extract from the chini portion of the muscle is raluable as an antigen in Wassermans's reaction for sypluis. In the Thrumidae the dorsal auterior end of the stomach is comecterl with the roof of the loody-carity by means of a short, slender, median muscle.

In the teleostean fishes the quantity of flesh amounts to less than sisty percent of the total weight of the body. but in the Plecostei it is more thum serenty percent, especially abundant in Thamus germo, as in this species the dorsal wall of the abldominal carity is conver. This abundance of flesh is due to the nurromnoss of the risceral carity, or the great development of the lypaxial partion of muscle in the precaudal region. Mr. Gr. Iuasa of the Los Augeles Sca Food Packing Co. told me that 1 ton of Thumaus germo produces 45 cases of camned meat, while from Neothomus macropterus only 37 cases are produced.

LIGAMENTS AND TENDONS.

As the so-called seombroid fishes are generally active swimmers, they are rich in ligaments and tondons, which are bust dereloped and most complicaterd in the Plecostei. A well dereloped ligament generally present in teleostomatous fishes comects the shonlder-girdle with the axial skeleton. I shall distingnish
this ligituent moder the name of the chavicula ligament. It is insertert to the immer side of the supandavicle at one cand, and to the occipital rerion or to one of the suterion vertelna: at the wher. Ansther ligunent, commonly fourd in the telenstam fishes is londr, sitmateal in the spinal eanal, above the spimul cord, thus commecting the rertelnius. A short mestian lignment commecting the skin in the head to the frontals is peculim to the 'Mmmidac. A pair of thin and short liganments is fomm letween the first and second rertebrewe in the genus Auxis. Besides these there are many ligiments comecting different pirts of the skeleton.

Temdens are well dereloned now loth onds of the body, especially near the tail, and in the fislus of the Fiatuwonide. A longitudiual tendon ramine from the tail sud forming the axis of a large moscular cone is very long in Auxis (fig. 2). In this genus two tendons forming the anterior extremities of the two hypaxial eones of myotomes just lelow tho median septum between the epaxial and hypaxial portions of the lateral muscle are remarkable. The external tendon is attached to the supraclawicle, just belime the attachment of the elavionlar lis:ment, aud the intornal to the large lateral tuberele of the second vertebrat. Between every two boxly-segments we find a pair of tendons. These tendons comect the intermuscular bones, and are joined at the abaxial end to the myocommata. In the teleostean fislos these tendons are simple, but in the plecostean fishes they are longer and much more complicated, as they make more acute augles with the vertelual eolumn.

NERTOUS SISTEM AND SENSE ORGANS.

The brain-cavity of the scombroid fishes is small as in other teleostomatons fishes, and the brain does not occupy eren the whole of this small earity, heing surromaded by a thick layer of a fatty substance. Thins even a tumy of ea 40 kg has a brain as suall as a man's thumb. The brain of the scombroid fishes does not differ mueh from the common type of the luain of the Teleostomi. The enormons development of the optical lobe and cerebellum is striking. The uonderelopment of the cerebral hemisphere is also remarkable. In the Plecostei the optical lobe has a very large groove on the ventral side, as if the lobe is made by folding, when socn from that side. The groove is especially renurkahle iin Auris, in whieh it comesponding groove is found in the
ventral side of the skull, in the otic region.

Fig. K. Dorsal view of the brain.
1, Scomber japonicus; 2, Cylium niphonium; 3, Thunnus orientalis; 4, Thunnus germo; 5, Katsuwonus pelamis; 6, Auxis maru (dorsal \& lateral); 7, Euthynnus yaito.

In the Plecostei the brain is thieker than that of the Teleostei, and the cerebellnm covers the whole length of the brain, behind the prosencephalon. The external surface of the prosencephalon and cerelellum is not flat. The former is divided into forr longitudinal lobes, and the latter into several areas by the merlian longitudinal and transterse grooves.

Ganglia of the sympathetic nerve are formd in the haemal canal, one in each body-segment, and when the canal is filled with the vascular plesus, they are embedded in it.

The otolith is rither thick and the parts on each side of the median groove are nearly equal in the Scombridae. In the Cybïdie one side is longer than the other, and in Gymnosarda the longer side is rery mnch elongated and is mearly twice the length of the other. In the Thunnidae the otolith is straight, and one side is much longer than the other. In the Katsuwonidae the otolith is very slender and the parts on both sides of the groove are equally well developed, the lind and being more or lass swollen.

The olfactory organs are a pair of grooves in front of the eyes. Each groove or sae communicates with the exterior by a pair of pores, nostrils. The anterior nostril is generally small, while the posterior is more or less elongated, oblong in the Cybiidue, and quite is slit in tho Scombridae and I'lecostei. Beneath the anterior nostril, thero is a group of olfactory leares, about 30 in number, anranged radially, in the form of a rosetie. In the Scombridae two nostrils are situated rather near each other, and the upper wall of the olfactory eavity is uniformly thin. There is a doep groove in the floor of tho eavity before the ethmoid, and just behind the olfactory rosette. The carity extends behind the groove. The inner opening of the posterior nostril lies above the groove or before it.

In the Cybiidre the olfactory cavity is rather small, and the two mostrils are close together, the whole cavity is nearly filled with the rosette of the olfactory lenves. In this family the posterior nostril hies more or less behind the rosette. The dorsal wall of the cavity is thin, but the border of the inner orifice of the posterior nostril is generally raised. Moreover the dorsal wall is thickened in Sarda. Generally the cavity does not extend behind the posterior nostril, and there is a fleshy dam behind the rosette and below the posterior nostril.

In the Thunnidae there is a space behind the rasette, thas the two nostrils are much separated. The anterior nostril is very minute. The rosette of tho olfactory leaves is high and occupies the whole height of the cavity. The dorsal wall of the carity is very thick.

In the Katsumonidae the tro nostrils are closo together, and the cavity is much more depressed than in the Thunuidace. The passage of the anterior nostril is almost perpendicular to the surface of the head, while that of the posterior is more or less turned obliquely. The former has the uniform calibre, but the latter is wide at the inner orifice, and becomes gradually namrow towards the outer orifice. Between these nostrils there is a nurow groove on the roof of the olfactory cavity.

ABDONINAL CAVITİ.

In the Scombidae the height of the abdominal carity is more than half the height of the body, and the carity lies just beneath the vertebral column ;
lout in the Cybiidae the cavity is more or less scparated from the rertelral colmmn, from the development of the huemal processes in many precaudal vertelnae. In the the Plecostei the coelomie cavity is low and narrom, as the haomal process of precaudal retebrae is mnch better developed than in the Cybindae. The height of the eavity is less than its breadth, and its roof is flat or conves, thatched with a broad proximal portion of ribs, and protected by the peritonerm, composed of thick hundles of connective tissue arising from the distal and of the precaudal laemal spines, and interworen with each other at their root. These bundles of comective tissue are inserted at the rentral median line of the cavity, here too, their ends are interworen. Generally speaking the visceral cavity of the scombroid fishes does not extend to the candal portion, though some posterior rilos push their way into the latere] muscle, beyond the peritoneum, and lie on each side of the interhaemals. Thns the length of the abdominal carity may approximately be known by measuring the distance of the anus from the gill-slit. In the gems Auxis, howerer, the genital gland extends beyond the origin of the aual, and grasps the interhaemals of the fin from both sides. Thus the aldominal earity is also extended backward beyond the anus with the genital glauds.

In the Scombridae the peritoneum is often dark coloured as in Rastrelliger and immature forms of Scomber probably owing to the body being broad, and abdominal wall thim, nearly rertical, and the light seems to transmit more or ${ }^{\circ}$ less; but in adnlt forms of Scomber, Cybiidae, and Plecostei the peritoneum is little affected by the light, as the abdominal wall is thick and is tmoner obliquely downwards. Thus the peritoneum remains nearly colourless in these gronps. The peritonenm is developed round the visceral organs and eurelops them, and the generative organs, rectum, etc. are suspenden from the dorsal wall of the body-cavity by the peritoneum. The peritoneum is rery thick at the posterior part of the body-cavity in Thumnus germo.

ALR-BLADDER.

The air-bladder is sometimes present and sometimes absent, and this is the case even among species of the same genus. The arr-bladder is generally absent in those fishes living always near the surface of the sea. Thus it is entirely wanting in the fishes of the Katsuwonidue. It is, however, rather
lifficnlt to mulerstand that Acanthocylium which is always found near the surface has a well developat air-blather, while Cybium niphonium which has a rather wide rage of vertical distribution lacks it. The air-bladder is more (1) less fusiform, aud generally thickened at the anterior pat.

In the Scombridae the air-blatder is generally prosent, being absent in Scomber scombrus only. In Scomber jeponicus the air-bladder is fusiform, namow and pointed at both ends. It ccenpies a little more than half the length of the abrominal carity. Its wall is very thin.

In the Cybiidare the air-bladder is not fomut in Cybium niphonium, C. loreanum, and Sarda orientalis. In Gymmosartla nudu the air-blalder is large aut thick-wrallex.

Fig. J. Air-bladder of tunnies. 1, Thumnus germo (dorsal nad side views); 2, Thumus orientalis (dorsnl and side views); 3, Parathunnes mebachi (dorsal and side riews); 4, Jeothunnus macropterns (ventral view).

In the Thumidiue the development of the air-bladder is very interesting. In Thumus germo the ar-bladder is narrow, but long, muning the whole length of the abdominal cavity, and has a median dorsal swelling at the anterior end. In Thumus orientalis the air-bladder is triangular, rery wide, and straight at the anterior end, occupying the entire breadth of the abdominal carity, lut it is short, and becomes gradually narrow behind, pointed at the posterior end. It is a little louger than half the length of the abolominal cavity. The extemal wall is uniformly thin. The intemal wall is finely reticulated. At the middle of the roof of the air-bladder, there is a large romud hole, which leads to an accessory conical carity, extending from the hole behind to the
posterior end of the primeipal carity. At the anterior eud of this upper accessory cavity a vein pours to a segmentary rein. In immature tmmies the air-bladder is rery small, and ahnost collapsed. The air-bladder of this species has a pair of slight swellings along the auterior side.

In Parathunnus mobachi the air-bladder is a little namower than the roof of the abdominal carity; but occupies the entire length of the carity, at the anterior end the air-bladder is divided into two large coeca, by the dorsal aorta in the middle, and is separated by the cutancons arteries from the principal cavity. The internal wall is finely reticulated.

In Neothunnus macropterus the air-bladder is narow, and is protected by at rery thick mass of connective tissue from the rentral side. This thick mass of councetive tissue is utilized as a material in making glue. On the middle of the dorsal wall a large vein is formd with radiating renules from all sides.

The red gland is deteloped at the anterior part of the air-bladder, wear the point where the artery for the air-bladder cuters. The air-bladder of the Scombridae and Cybiidae receires blood from the dorsal aorta at sereral points, and pours its renous blood to the posterior cardinal rein at several spots; but in the Plecostei the arterial blood is reccired from a special brancl of an artery, runing along the right hand side of the stomach, and the renous bood pours to the candal or the posterior cardinal rein through a segmental rein. Thus the arterial system of the air-bladder lelongs to the axial system in the Scombridae and Cybiidae, but to the risceral system in the Plecostei.

DIGESTITE SISTEM.

The month-carity is black in the Scombridae, black or greyish in the Cybiidac and Thunnidae, and silvery or colourless in the Katsuwomidac. The tongue is small, narrow, and black in colour, and far behind the symphesis of the lower jaw in the Scombridue; broad, flat, and generally grevish in the Crbiidae; greyislı in the Thunnidae; aud silvery white, merdium in size, and the membrane at the lateral margins is tmed upward in the Katsuromidae. The surface of the tongue is gramulated in the genus Scomber, armed with rillous teeth in Gymnosarda and Thnunidre, quite smooth in Acanthocybium, in many species of the genus Cybium, and in the fishes of the Katsumonidae.

The development of the gill-rakers on the branchial arches las a close
welation with the nature of food. The gill-mkers are stainers, and chiefly serve to prevent the escape of forl from the hrandial eleft, thus they are lwast ifereloped in the plankton-feeders, such as mackerels and bonitos; but they are poorly doreloped in roracions furms, such as searfishes, and are cutirely wanting in Acanthocylium. At the same time the gill-rakers may serve "to prevent any solid particles from passing into the gill-clefts and eloggiug or otherwise injuring the branchial filaments." Gill-rakers are best devoloped on the external side of the first hranchial arch. They are long and bar the space betwoen the operele tud the brenchial arch. Other series of gill-rakers are developed on the intermal side and bar the intervals between branchial arehes or the interval between the branchial arch aud the lomer pharyngeals. Gill-rakers on the external side of the mrunchal arch are directed forward, while those on the intornal side are directed backward. Gill-rakers lie elose to the branchail arch when the month is closerl; but are separated and make angles with the bianchial arch, when the mouth is open. The inner or upper side of the gill-rakers is rough, annect with minnte tooth-like pricklos.

In the Katsuronidae the gill-rakers on the internal side of the branchial arches are well developed. The good development of gill-rakers on the upper arm of the first and second branchial arehes is remarkable.

In the Scombridae the gill-rakers are weak, longer than the gill-lamellae, and very numerous and closely set. Each gill-raker has two rows of alternating (liverging flexible filaments, giring a rillous appearance to the mouth-carity. In this family the gill-rakers on the inner side of each branchial arch aro protty well devoloped. In Rastrelliger the gill-rakers are enormously long, so that they may be seen from the gape of the month. In the Crbiidae the gill-rakers are shorter than the gill-lamellae, rod-like, and for in number. Fine but stont toothlike processes on the inner side of the gill-rakers are in tro or more rows. In most species of this family external gill-rakers only are dereloped. In Sarda chitensis, howerer, I found a few, small internal gill-rakers on the first gill-arel.

In the Plecostei the gill-rakers are thin, narrow lamellae with rillous teeth on the inner side. As the gill-rakers are long, and the gape of the mouth wide, the former may easily be seeu in the latter. In the species in which the number of gill-rakers is large, they are well developed in other respects as well, so that among the Japanese tunnies, Thunnus oricntalis has the best dereloped gill-
rakers, and in the genus Katsuvonus the gill-rakers are better dereloped than in the genus Thunnus. The inner or axial side of gill-rakers and also calcareous grains on branchial bones are corered with villous teeth. Teetli near the oesophagus are generally a little larger than others. Thus teeth on the lower pharyngeals and the hypobranchial segment of the fourth branchial arch are larger than those on other branchial bones.

In the Katsuwowidae the second, third, and fourtly gill-arches carry mumerous, thin, elongated gill-rakers, also on the posterior side. In Katsuwonus, moreover, the inner margin of the gill-rakers on the anterior margin undulates.

Stomach (figs. 3,5,6) . In the Scombridae the stomach is a rather thin walled, conical sac, suspended from the roof of the coelomic carity of the peritoneum, and weak longitudinal folds (about 16 in Scomber japonicus) are fomd near the two orifices, pyloric and cardiac. The cardiac orifice is more or less constrictect. The pyloric orifice, situated about midway of the stomach is long and ascendiug, i. e. turned anteriorly. It opens into the duodenum with a crescent-shaperl orifice, as its posterior wall is onormonsly thickened. In the Cybidae and Plecostei the stomach is a very long conical sac, the posterior end of which almost reaches the anus. The pylorns, situated quite near the oesophagns, is on the left side of the stomach, and is more or less turned posteriorly. The wa! 1 of the stomach is thick, tough, and rich in doep, longitudinal folds, some of which run into the pylorus. The food is chiefly digested in the sac-portion, Where the soft parts are almost entirely dissolved and the framework of the hard skeleton is also broken to pieces. The digestive fluid of the stomach is acid in reaction, very powerful, soon dissolving the skin of fish or cuttle-fish, then maseles, and lastly bones. The calcareous portious of the skeleton are dissolved learing the clondrous substance behind. The gelatinous tissue or tunicine of pteroporls, tunicates, de., jaws, pens, and lenses of cuttle-fish are scarcely changed in the stomach. The stomach of tumnies is rery loosely corered outside with the thick peritoneum, and the blood-ressels to the stomach lie under the membrane.

The pylorus is more muscular than the sac-portion, and generally rather short. It rums to the left side of the stomach. In the Scombridare ancl in the majority of the remaining teleosts the pylorns is ascending. In the Cybidac the pylorus is slender, variable in length, and is more or less dilated near the distal end, forming a special diverticulum, just before the boumdary
with the duorlenum. In the P'scostei the pylorus is rounded or more or less orvidal, being thicker at the prosimal purtion, and more or less twisted to the right-hand side at the posterior end. The dnodenum is separated from the pylorus by a well marked constriction, and suddenly dilates, bence it is more or less sac-shaped. It is thin walled, widest just lehind the pylorus, overlapping the latter a little and becoming gradually narrow. It is curved forward, tonching the dorsill posterior surface of the liver, and is bent dorst lward, then backward, and lastly beuding to the right-luad side, passes to the intestinc. In more or less tainted fish the duodenum is the first to dissolve, probably by its own enzymes, i. e. by the action of autolysis. To this portion of the intestine the pyloric corcer and cystic duct open their apertures. The latter duct enters at the anterior side of the duodenmm, just near the pylorus, while the former generally open at the pasturior side with many apertures, distributed in one or sereral rows. The pyluric coeca are generally yellowish in colour.

Longitudinal fulds of the stomach are mostly about 20 in the Cybidaw, but in the Thumidiwe there are nsually $30-40$, but in the Fiatsuwonidas they decrase in mumber again, to about 20 in Fatsuuconus, 12 in Euthynnus, and neally indistinct in Auxis.

Prlurie cueca. In the Scombridue (fg. I) the pyloric cocea :ure coarse, numerous, and cach coecum communicates directly with the duodenum (Scomber), or a few or several coeea coalesce at the root and open by a common orifice (Rustrelligei). They are crowded in a long and more or less triangular traet on the posterior or rentral side of the duorenum. Those coccu near the pylorus are long, and their lengtly gradually diminishes in proportion to the distance they are fiom it. These numerous coeca are connected by loose comective tissue traversing them.

In the Cybiidae (fig. 6) and Plecostei (figs. 3, 5) the pyloric coccat are remarkably well dercloped and assume a couspicnous size as a mass. The sizo of each coecum, howerer, becomes small as the development of the pyloric cocert is an organ adrances. In these groups of fish the coeca do not open directly to the duodenm, but to its tubular ontgrowths of riurying length. These tubules are dendritically bruncherl, have a rather thin but tougls wall, and some longitudinal grooves inside. They are more or less capable of distention. Each brauch of the pyloric tubules with tufts of coeca is euclosed by a membrane of
comnective tissue, and the whole mass of the pyloric coeca is again enclosed and connected compactly by a common mombrane, the peritoneum. In pyloric tulules we find a riscous, milky fluid; and sometimes half digested particles of foor as well, when the stomach is glutted. Mr. IU Iokors examined for me the nature of enzymes in the prloric cocca of Neothunnus macropterus, and obtained the result that amylase and protease are present, but he could not detect the presence of lipase. This result confirms other authors' results of investigations, and points ont that the chief function of the pyloric coeca is digestive. In this iuquiry glandular portion only was used, so that there was little foar of mising of gastric juice.

In the Cybiidae the number of pyloric tubules is few (2-6), and small one of them is often found on the anterior concare side. The concal portion is sparingly branched. In the Plecostei the number of pyloric tubules is a little more numerous (5-10), and their short terminal branches carry tufts of simple coeca. Two or three simall tubules are found on the concare side of the pylorms in the Katsumomidae. In the Thamnidae the size of coeca is not uniform, those near the distal end of the longest pyloric tubule being larger than others. The tubule next to the pylorous is longest, and succeeding ones rather suddeuly decrease in length. These tubules are generally disposed at the posterior side in a line along the entire length. Thein orifices to the duodenum are raviable in size and form, being rormd, oblong, or sometimes slit-like.

Intestine. The duodenum is trinsferred to the small intestine at the spot where the alimentary canal is bent backward, i. e. at the junction of the ascending and descending parts of the alimentary canal. The longth of the small intestine is rery variable. It is short and straight in Grammutorcynus and Katsuwonidae, and long and more or less folded in the Scombridae, Cybiidue (except Grammatoreynus) and Thunnidac. In Rastrelliger, some species of Cybium, and fishes of the Thunnidae the intestine is comparatively and newly uniformly slender; lout in these cases the intestine is always much elongatiod. The intostinal tract is a little more slender thim the duodeuum. In the KatsiWonidue the swall intestine is rery short, being nearly equal in leugth with that of the abdominal carity. But the intestine is often thicker than the rectum, and many weak longitudinal folds are found in it. Sometimes the rectum is thicker than the small intestinc. In this fimily the intestine is nearly equal
in length with the rectun. The rectum is relatively long in Seomber ton. The bonulary between the small intestine and the rectmon is indicatod by a trenswerie ridge inside. In the so calleal seombroid fishes the length of the intestine serms to lave lont little comection with the mature ef fond, as voracions fishus of the Cybiidae have often a long iutestine, folderl several times, and fishes of the Fiatsmwonidu:, whieln feed on wedium sized phanktom, have a short, straight intestine. Rustrelliger which is in plankton-feeler las a vory long intestine, more than 5 times as long as the length of the abdominal cavity. Usually the colone of the undigested ingredients of food differs in difierent tracts of the intestine. In the

1, Sromber juponicus
2, Neothunnus mauropterus
Fig. M. External aperture of the cloncal cavity (enlarged), showiug from abore the amal, geditnl, nad urinary ofenings on the respective papilla. scombroid fislus the alimentary canal and genital and minary ducts open to a common depression which is very shallow and commmicates to the exterior with an clongated cleft. The ams, genital pore, and mrinary pore all open independently on respective papillae. Of these the auns is the largest. The posterior wall of this clonca-like space is more or less darker in colomr than the anterior. When we handle the viscera of a tmany, more or less stale, with naked hands the wet portion becomes itchy, and in certain people the contact occasions small tumors of the skin. This is prolably due to the formation of ptomain. In the viscera of a stale fish we often find small erystals on the external surface of the mass of the pyloric coeca.

Liver (figs. 2, 3,5,6). The liver is a large brownish organ, generally divided into three lobes, and situated just behind the diaphragm, and covers the anterior and ventral part of the stomach. In the Scombridae the live, differs remarkably in form from the other allied fishes. It is a small, undividedrmore or less triangularly pyramidal organ, with three trenchant edges. It is sitnated at the left, anterior corner of the abdominal carity. The right hepatic rein is found at the attenuated margin of the right, anterior corner. The middle and right lobes are scarcely developed. In the Cybiidae we find three lobes of the liver, but their respective size and form are variable. Generally the right love which is scarcely developed in the Scombridae, is best dereloped, but the left and middle lobes are poorly developed. In Gymnosarde, however, the left lobe is best developert.

Fig. N. Exteranl view of the liver. 1, Scomber japonicus; 2, Cybium niphonium;
3. Sarda orientalis; 4, Gymnosarda nuda; 5, Thunnus orientalis; 6, Parathnnus mebachi;
7. Neothunnus macropterus; 8, Katsuzoonus pelumis; 9, Euthynnus yaito; 10, Auxis maru.

In the Cybiidae as well as in Scombridae the surface and the outline of the liver are smooth. In the Thmmidae the three lobes of the liver are subequal, but in the Katsuwonidae the lobes of the liver are unequal in size, the right lobe being best developerd, and the left lobe is often not well defined. In Thunnus (fig. 3) the external surface of the liver is marked with fine renules running very close together, and at the anterior anddle portion of the liver, near the spots of emergence of hepatic reins, the liver is rery thin, being composed of hepatic renules ouly. Moreorer the liver is dirided iuto many irregular lobules at the margin as well as at the internal or axial side, whore
large masses of rete mirnbilis of blood-vessels are found. In Purathunnus the extermal surface of the liver las a few short venules near the posterior margin; but in Neothumus no renules are found at the external surfice. In these two grenern the lobes of the liver are not deeply ent, and in the latter genns the right lobe is a little longer than the other lobes. In Euthynnus and Auxis (fig. 2) the right lobe of the liver is enomonsly elongatet, almost reaching the auns, white the left lobe is often inconspicuons, being not separate ${ }^{\text {x }}$ a a distinct indentation from the middle lobe. In Auxis moreover dark and thick dendritic figures of the hepatic rein are clearly discernible on the external surface of the liver.

The gall-bladder (figs. $1-3,5,6$) is an enermonsly olonghterl sac, rumning along the intestine, on the inner side of the right lobe of the lisor. The hadder becomes narrow at the anterior part and passes gradnally to the cystic duct which is bent backward along the inner side of the middle lobe of the liver, aud opens to the duotenum with a narrow duct, ductus choledoclius. To the eystic duct three or more hepatic ducts open. These wre more or less dendritically brauched in the liver. In the Scombridae the gall-bladder is elongated and receives some slender ducts (3 in Scomber japonicus). In the Katsuwonidae the hepatic duct in the right lobe of the liver is rery loug, running the whole length of the lobe. The gall-bladder is greenish in colour, lut it is sometimes purplish in a stale fish.

The spleen (figs. 1-3, 5, 6) is a compact, elongated body, more or less compressed, and dark red or bromnish in colour. It gencrally lies close to the junction hetreen the duodenum and the small intestine. It is rather small in the Scombridae aud Cybiidae, but in the Thunnidae it is rery well dereloped and is attached to the anterior part of the fold of the small intestine, occupying the space cnelosed by the duodenum, and the intestinal tract to the second bend. In the Katsuwomidae the spleen is again suabll and lies exterior to the intestinc. In the gems Sarda the spleen is much separated from the liver.

RESPLRATORI SYSTEM.

In the so-called scombroid fishes the gill-openings are very wide, extending from the origin of the chin to the posterior ventral margin of the cranium, and the branchiostegal membranes not being united at the anterior end, romain
free from the isthmus. In the Scombrilae we fand a slight depression at the posterior, dorsal margin of the gill-opening, just anterior to the origin of the pectoral. This depression togetler with the soft flappy portion of the opercle above it, make easy the escape of foul water from the gill-chamber. In Rastrelliyer, moreover, a slight depression or groore is found on the hind rentral margin of the gill-opening, or at the lower, anterior margin of the shoulder girdle. Such structures of the gill-opening as the flappy portion of the opercle opposite to the slight depression of the gill-opening, and another depression on the posterior ventral margin are often fomed in fishes of the Carangidae as well, and we see that there is some relation between these two families.

The branchiostegals are slender, seven or eight in number, and the membranes connecting them are rather wide and extensive. In the Scombridae the branehiostegals are dissimilar in breadtl and form, posterior ones becoming broader and much more curved or bent.

In the Cybiidae the brancliostegals are slender, and the membrane connecting them is extensile. In the Plecostei the posterior branchiostegals are more or less broad, and the free margin of the membrane is much thickened, hence tough from the development of connective tissuc. The membrane is nonextensile and remains fastened to the inner side of the opercle, a little remored from its margin, like an inner rim of a lid to a base.

The pseudobranchiae are equally well developed in the Scombridae, Cybiidae, and Plecostei.

The brauchial lamellae are very thin, and closely set, nearly equally in all scombroid fishes; but their length aud breadth vary greatly in different families. Their length is proportional to the breadth of the opercle. In the Scombridae the gill-lamellae are short and narrow, abont lualf the length of the upper arm of the first gill-arch. In the Cyluidae they are a little longer than half the length of the mpper arm of the first gill-arel, and in the Plecostei they are equal in length with the latter. In the Plecostei each hanchial filament is strengthened on the proximal, axial side of each gill-arch with many minute transverse rods.

In Acanthocylium the branchial lamellae anastomose with each other as in the Xiphiidar, lont in the former the anastomosis is limited to the proximal portion of the lamellae, not orer the whole extent of the gills as in the latter.

VISCULAR SKSTEME.

In the rascular system too, we find many very important points of difference among the scombroid fishes. Fipecially the order Plecostei presents many characteristic fentures, remarkinhly difierent from all the other fishes. 'The chief features of difference are the greater quantity of hlood, greator number of bloorlressels, and larger heart. The most noteworthy difference is the development of the cutaneous vascular system, not found in the 'Teleostei, and peculiar vasaular plexus in the lateral muscle, and enormonsly developed vascular plexus under the liver, or in the hamal cand. Therefore we distinguish three different systems of blood-circulation in the Plecostei, mamely vertebral, visceral, and cutaneons. These three systems have respectively in peculiar feature in the Plecostei; but the peculiarity of the rertebral system is alternative with that of the visceral. The cutancous systam is very conspicuous and quite characteristic to the Plecostei, and has an correlation with the presence of the dark rerl prortion of the lateral muscle, romm the vertelral column from the development of sleet-like vascular plexus. It is very remarkable that such a conspicuous and peculiar system of circulation remained almost unknown to science. 'Ihough the keen eyes of Cuvier (12) discovered it in the common tumy of Europe, he did not put much weight on it, so that he described it rather in passing in the following lines:-
"Lorsqu'on a levé la pean du thon, on troure sous la ligne laterale un graud raisseau, qui donne do sa face externe, en dessus et en dessons, beaucoup de branches dans les museles voisins. Sa face interue est criblée d'm nombre infini d'orifices d'iutres branches, qui vont se perdre sur nue membrane glandulense épaisse ".
After Cuvier no one has studied nor even mentioned the peculiar bloodvessels. In 1836, Eschrichit and Müluer (19) published an interesting paper on the peculiar plexns of blood-vessels among the viscera of the common European tunny. In that paper they give a figure, showing the origin of the cutaneons arteries (Taf. MI, fig. 3); but identified them with prejudice as the axinl arteries, and did not trace further. In 1915 I published a paper on the peculiar circulatory system (44) in the "Suisan Gakkwai Hu" (Proceedings of the Scientific Fishery Association) Vol. I, and in 1918 another paper in the

l'ig. O. Diagram showing the vascular system of Thummes orien!alis.
same jurnal, Vol II (46).
Besides the peculiar eutaneons system and raseular plexuses on the iuner side of the liver described hy Eschment and Mülles: there is another peeulian plexus in the haemal canal of the rertebral column in Neothunnus and Kittsuwonidae. In these fishes the rascular plexuses on the inner side of the liver and fine hepatie reins on the onter side of the liver are wating. Therefore these hepatic plexuses seem to be the alternative of the plexuses in the haemal eanal. Both the hepatic plexuses and the plexuses in the haemal caual consist of blood-ressels entirely filled with blood-corpuseles.

In the Plecostei the candal peduncle is very slender and full of strong tendons, thms there is little space for the sure circulation of blood, and here blood-ressels find a safe passage in tho substance of the rertebrae themselres.

The higher temperature of the body than the surrounding water, and cousequently great activity of fishes of the l'lecostei is undoubtedly due to the peculiar circulatory systems above described.

Tenous syistem. In the Scombridae (fig. 1) the chief rertebral renous syistem consists of the jngular reins, Cuvierian ducts, posterior cardinal vein, lateral vein, and segmental reins. The riseeral system consists of the hepatic reins, hepatic portal reins, and the genital reins from the gonads. The genital reins unite with the posterior cardiual vein separately. The posterior cardinal rein lies below the dorsal aorta and commmicates with the Cuvierian duct of the right side. The segmental reins carry venous blood along the newal and haemal processes and intermusenlar bones, generally in every other myotome, alternating with segmental arteries. The renous blood from the surface of the body is collected in these segmental reins, but chiefly in those running to the inner surface of the wedge-shaped superficial reddish muscle and then aloug intermuscnlar bones. These segmental reins are short and small. The venous blood in the lateral wall of the abdominal carity is chiefly collected in the segmental reins along the peritoneum and pour to the posterior cardinal rein at the root of the pleural ribs, and partly to the lateral veins running aloug the rentral median line, collecting some inferior segmental reins in the anteroinferior part of the lateral body wall. The Cuvierian ducts are large vertical ducts, ranning along the sides of the oesophagus, behind the pericardo-peritoneal septum and join the simus renosus.

The venous system of the Cybiidae (fig. 6) is nearly similar to that of the Scombridae; but differs in the development of the renal portal system in the precandal region, where some segmental reins running along neural processes and intermuscular bones are minutely divided in the kidneys. Nearly at the posterior end of the precaudal region the cardinal rein leares the haemal canal and runs obliquely downward to clear some preceeding haemal arches and short haemal spines and passes throngl, the kidney, receiving numerous remules there and taking a more or less ascending course rejoins the dorsal aorta in the haemal canal. The segmental rein is not found in every segment, but almost in every other segment, alternating with the segmental artery is in the Scombridae.

In the Plecostei the renous system differs greatly from that of the Teleostei, as stated above, moreover there is a great variety in the system in different forms of the order. In the genus Thunnus, the most primitive type of the Plecostei, the eutaneous system is best developed, and the vertebral system is abortive, the posterior cardinal vein being wanting. A short, slender caudal vein is fomd in the place of the posterior cardinal vein. The caudal rein joins at the middle part to the trausverse commissure of the cutaneous reins and thus communicates indirectly with the Caverim ducts. A pair of cutaneons veins, are found on each side of the body, on the epaxial and hypaxial sides of the lateral median line. These two veins run almost parallel, and quite near each other. They run dexp into the myotome of the fourth rertebra, at the lind margin of the myotome, and mite a little below the surface of the body. The confluent ressel runs obliquely autoriorly, passes under the proximal slender part of the third rib, and joins the Cuvierian duct of the respective side, after collecting many renal venules. The right and left cutaneons veius are united ly a transerse commissure in the candal portion. This transverse commissure of the cutaneons rein is found in all the forms of the Thunnidae. Segmentinl reins, both cutaneous and the vertebral, are found in erery myotome.

In Parallumnus (fig. 4) the cntaneous veins of loth sides pass throngh the myotome of the sixth vertebra, and each miting to a large vein ronning below the fifth lib, pour into a transvers canal behind the pharyngeal muscles. The transvers caual juins the right Cuvierian duct after uniting with a short renal rein. The caudal reiu is very slender as in the genus Thmmus, and

does not unite with the Cavierian duct directly. In this genus most of the segmental reins rumning along the laemal spines in the precandal region and also in the auterior part of the candal region are divided into many renules near the rortebral column, so that their blood does not return directly to the heart, but seems to be collected to venules above the vertebral column and in the dark rel portion of the lateral muscle. This is very remarkable. The segmental reins in the caudal region nuite to a slender caudal rein.

In Neotramnus the posterior cardimal rein is rery conspicuons, and gives off a peculiar plexus in the hamal canal, and at last joins the right Curieriau duct. The cutaneons veins are united by an anterier transverse commissure as in Puratlumnus, or sometimos each of them pour directly into the Curierian duct of the respective side as in Thunnus. A short slender renal rein runs nuder the posterial carctinal vein and is mited to it.

In the Katsumonidae the rextebral venous system cousists of the posterior cardinal vein, jugular reins, Cuvierian ducts, lateral reins, cutaneons reins, segmental veins, and subspinal plexus. The posterior cardinal vein is connected with a remarkably woll developed plexus of vemules in the haemal canal and joins the right Cuvierian duct as in the genus Neothumnus. The cutaneons reins do not join the Cuvierian duct directly, nor are they united by a transverse vessel in the thoracie region to the pasterior cardinal vein, lont are divided to renal portals. Thus these entancons veins differ from the similar reins of the Thunnidae. Moreover the lower cutaneons rein of this family is not homologons to the lower hramch of the cutancous vein of the Thumidae. The opaxial and lespaxial reins originate in different myotomes and they do not form a loop at the caudal region, nor are they counected by a transverse commissurc. In Katsurvonus the epaxial aud hypaxial cutweous veins are nearly equal in size and leugth, and though they are not straight they are nearly equally distant from the lateral metian line of the body. These veins run anteriorly and to a deeper part of the body, passing through the myotome of the fifth vertelna. The epaxial rein passes lelow the first rib, while the lower passes abore it. These two reins receive blood respectively from the sheets of vascular plexus on the dorsal and rentral sides of the dark rexd portion of the lateral muscle. In the other gencra, Euthymnus nud Auxis, the epaxial cutaneons vein is very thick and runs close and parallel to the
lateral median line of the hody, rumning to the deeper part of the body between the myotomes of the fourth and filth vertebrie. The chief cutaneons segmental reins are mited to the epaxial cutaneous vein, and sheets of rascular pleans smomoding the dark rex portion of the lateral mascle are connected with the rin. The hypaxial eutaneons roin is remarkably short, slender, aud rigzag in its course, disappearing from the surfine of the body just behind the postelavicle and lwfore the myotome of the first vertebra. In the Katsumondae the hypaxial entanems rein oblwas passes lefore and above the first rib. The posterion cardinal vein leares the lanemal caual from the fimuteenth rertehra or a still more hackward position. Anterior to that point the pusterion cardinal rein is more or less separated from the dorsal aorta, receiving several short but comparatively lawse veins at hoth sides of the dorsal aorta, and these reins are formed from parallel vemules of the vascular plexus in tho hamal canal or "kwochiai" in Japanese. At the same point an inferior posterior brameln joins the posterior cardinal rein. The branch is a slender renal rein as in Neothomus. The cardinal vein and the dorsal aorta too are sitnaterl close to the lower side of the hemal cinal, sending a thick forl of vascmlar plexns ahove, which fills up the broad canal. The kurochiai appears from the segment of the fifth vertebra in Katsuconus, from that of the sisth rertelna in Euthynnus yaito, from that of the ninth in Neotlounnus, and tenth or twelfth in Auxis. In the latter gemes the epaxial entaneous vein passes between the two accessory cones of the lateral muscle (fig. 2),

The visceral renons sistem of the Plecostoi consists of some hepatic partal reins, hepatic veins, and genital reins. The chiof diffurence from the Cybiidac and Scombridae lies in the genital reins, which directly join the Cusierian ducts. In the Thmmidne the hepatie portal veins are more or less divided into pleanses or parallel rennles before cutering the liver. The plexus is most remarkably developer in Thunnus. In this gemms the venules are interlinced with aterioles of the cocliae artery. Ench pleans is as large as a fist, and is more or less conical. In another geuns, Puruthumus, ouly venules are found in the plexus, consequently the plexns is thin, elongated, and in the genus Neothumus tho pleans is not fomd at all, but instead of a single trouk, the heprie portal reins are composerl of several purallel venules. Conconitantly with the development of the pecnliar plexns on the internal side of the liver, the
hepatic reins are divided rery finely and run quite near the extemal surface of the liver. In Parathmmus renules of the hepatic veins on the esternal surface of the lirer are rather short and sparce, while in Neothumens renules of the hepatie veins are few, large and are not found at the external surface of the liver. In immature forms of our common tumy reuules on the surface of the liver are shont, remarkably shorter than in the adult. In the Katsuwonidae neither the plexus nor the parallel renules among the viscera nor those on the external surface of the liver are found. In Auxis, howerer, hack dendritic figures of the hepatic reins are noteworthy on the external sunface of the liver. In Euthynnus and Auxis the right lobe of the liver is elongated, and hepatic portal reins from the pyloric cocca run in many transserse canals to the lobe.

Heart. The heart lies just before the pericardo-peritoneal septum, in a more or less conical space, enclosed and protected by the lower pharyngeals, clavicles, and pelvic girdle. The organ consists of a sinus renosus, auricle, rentricle, and bulbus arteriosus. The sinus renesus is thim-walled and spacious, formed by the union of the Curierian ducts below the oesophagus. The sinous communicates with the amicle by a round opening. The auricle is a more or less flattened sac with a triangular outline, covering the dorsal anterior face of the rentricle. The inner side of its wall is reticulated with muscle bundles. The rentricle is frim, thiek walled, more or less tetrathedral in shape, with an anterior rertex, ventral edge, and posterior base. In the anterior dorsal face the rentricle is connected with the preceding chambers. Thus here the couse of blood-cireulation is ehanged. The posterior face or the base is flat or rather: a little concare. 'The bulbus arteriosus is a laterally compressed sac, oroidal in form, with a well developed muscular wall. The sinu-rentricular orifice is elliptical with two large pocket-shaped valves, while the amiculi-rentricular orifice is roundish, guarded with four hood-like valves. The size of the leart is remarkably large in the Plecostei as it propels more blood than in the Teleostei. The form of the heart is different in the Plecostei, the hase of the rentricle is nearly rertical in the order, while in the Scombridae and Crbiidue it is oblique.

Arterial system. The bulbus arteriosus gradually passes to the short rentral aorta which gives off four pairs of afferent branchial artories. The aeriatexl bloorl in the gill-arches is mostly carried dorsiblwards to the efferent

Fig. Q. Diagrams showing the arterinl system of the scombroid fibles.
The upper row represents the anterior part of the visceral arterial system, showing the origin of efferent branchial arteries, cotlinco-mesenteric artery, and cutaneous arteries. The Poman munerals cienote the cardinal numbre of vertebrae. The uther rows represent the visceral arterial system. ". Scomber jugonimas; b, Cybiun niyhonium ; c, Surla orientalis; d, Thunnus germo;
 rarus: i. Fivtsuranes pelanis: j, Futhynmas yuito.
lnuchial arteries, lat a rery small portion is sent rentralwards beneath the rentral aorta to form the hypolnanchial artery; unappropriately named, which nomishes the leart, ventral fins, and the ventral carinales. In the Katsuwonidae tlis artery is divided into paired brauches behind the rentral fins. A slender antery runs backwads just above the rentral aorta to nomish the heart. The artery is formed by the union of branches of downward efferent branchial arteries in the third gill-arches. A part of the blood in the efferent branchial arteries is conveyed anteriorly by the carotid arteries to the cephalic region, but the greater part of the blood is carried backwards by the dorsal aorta.

To the vertebral system arising from the dorsal aorta belong the renal arteries, subclarian, and in the case of the Plecostei, the cutaneons arteries. The subclavian arteries arise near the the root of the coelinco-mesenteric artery in front of the pharyngeal muscles. They are short, and are soon divided into two branches, anterior and posterior. The posterior brauch running obliquely backward becomes the subclarian or brachial artery for the pectoral fin. The artery is divided again into two or more, the exterior one of which goes to the extensor, the interior one to the retractor muscle of the pectoral fin. The segmental arteries are given off along the intermuscular bones, and also along neural and haemal spines. In the Scombridae and Cybiidate these segmental arteries are generally found in every other segment of the body. In the Plecostei, howerer, they are generally fond in erery segmont. In the Cybidat nearly all the precandal hypaxial branches of the dorsal aorta give off sholt, dendritic renal arteries (fig. 6). In the Plecostei (figs. 4, 5) only lorizontal segmental arteries are furmd in pairs in almost every segment of the body, and nourish the dark red portion of the lateral muscle, lying abore the median horizontal network of the oblique tendous. Generally speaking the cutaneous arteries together with the median horizontal segmental arteries we the source of activity of plecostean fishes. In the Scombridre and Cybiidre these arteries are generally found in every other segment, but in the Plocostei they are found in every segment.

The entemeous arterial system consists of one or two large trunks running near the lateral median line of the body, originating in the pectoral region, lehind the pharyngeal muscle from the dorsal aortr. These arteries are neanly equally as large as the dorsal aorta itself. In Thumus they originate in
the segment of the fifth virtebiat, in Proathumus and Neollounnes in the suynuent of the eighth or ninth vertolnat. Escuricur unservel that the dorsal arorta lecomes abruptly slender after the ramifieation of thase entaneous ateries, in the following worls:-" Nach dem Abgang der eitervere axillares wird dio Anrta plötzliclı anchr als mu die Hälfe dünner im Durclunesser".

In the Thmundae the cutancons artery wus obliquely backward and dorsalwad. pessing lehind the third (Thumens) or fifth rib (Purathomens and Neothunnus), and reaches the surface of the lady before the intermascular bone, attacher above the root of the respective rilo. Ieffre reaching the surfuce of the body each artery is split into two equal lutheles, romeng dorsal and rentral to the lateral median line, nearly parallel to each other (fog. 3). They are mited again in the candal portion hy a triusterse commissure, and the commissure is again united to the dorsal worta by a pair of horizoutal segmental arterics (fig. 4). Each branch of the eutamerius arterics gives off, at the surfice of the berly, segmental arteries obliquely bickwards along the borders of myotomes for sumo distance and then bends forwards. The dorsal lranch sends dorsal segmental arteries only, and the ventral branch rentral sergental arteries only. These cutaneons seguental arterics send arterioles axially, along myocommatit or straightly inward (fig. 3). Buth dursal and rentral entancous arteries, morcover, send one or two rows of very numerous parallel arterioles, quite close to each other. Thest arterioles run obliquely inward, aloug the boundary between the red and dark red portions of the lateral muscle. They are soon divided into several smaller eanals and always pun in association with similar renules making a membranous sheet investing and nourishing the dark red portion of the lateral misele. The arterioles in the vascular shect gradually wnite agrin reduced in number at about midnaty between the surface and the axis of the body, and ranush in capillaries, so that the dark red portion of the lateral frusele is not entirely covered with fine bloorlvessels and eapillaries near the asial part. The rascular sheet is thick near the surfuce of the loody; leroming gradually thin as it approaches the axis of the body. In the Plecostei, except Euthynnus, the cutaneous arteries always run on the axial and inner side of the accompanying reins. Generally the axial murgin of the cutaneous rein partly covers or is at least apposed to the abaxial margin of the accompanying cutimeons anter: ; but in
the blue-finned toma from San Pedro, Cal., I found the axial margin of the entaneons rein partly covered by the abaxial margin of the accompranying artery. In Euthynnus (all known species inclusive), howerer, the entancons antery lies on the abaxial side of the accompanying vein, and the asial margin of the cutaneons artery is partly corered by the abasial margin of the accompanying vein (fig. 26). The distribution of smaller canals on the wall of the cutancons arteries is variable in different species, and so far as I hare examined, there are no two Japauese speeies of twmies which have the arterioles distributed in the same way (figs. 20-24).

In Thunnus germo arterioles are distributed on the external axial side of the artery in two or more rows, and they run axially. In Thanns orientalis arterioles arc found on the intermal side in one row, in Parathumus mebachi in two rows, intemal and external, in Neothanns macropterus in one row or two indistinctly aiternate rows on the side near the lateral median line of the body, and in Neothunnus rorus in one or two altemate rows at the middle of the abaxial side. In the Katsmwonidae, the cutancons artery of the epaxial side would be homologons to both the epaxial and hypaxial branches of the cutaneous artery of the Thumnidae. The hypasial eutaneous artery of the Katsuwondae is remarkably short aud sleuder, it generally originates in frout of the epaxial artery, and takes a forward direction, and after passing through the kidney tums backward, it is sitmated in a more ventral position than the lyypaxial branch of the cutaneous artery of the Thmmidac. In Katsumonus the epaxial and hypaxial arteries are nearly equal and originate from a common lateral branch of the dorsal aorta, in the lind part of the segment of the sixth vertebra, just belind the pharyngeal muscle. The common lateral branch of the dorsal norta is very short, horizontal. It is divided in the kidney into two cauals or rather it is united to a geutly eurved eanal, two limbs of which are turned backward. The epasial limb passes beneath the first rib and then between the intermuscular bones of the second and third rertelnize, while the hypatial limb passes orer the first rib. In Fatsuroonus the cutancous artery is obviously narrower in calibre than the dorsal aorta, and the epaxial and lypaxial branches are much more sepurated from the lateral mediau line than in tomies. The arterioles from these branches are given off at the surface of the body, between myotowes on both sides of each brauch, dorsal and
ventrat. Those muncrous arterioles uravishing the dark retl portion of the lateral muscle run axially. In Euthymus and Auxis there are two pairs of entanenus moteries originating fow two different puints. The nuterior fair is smather, Inmolegnons to the hypaxial limb of the entamous artery of Futsuwonus, and is fiven off from the boly segment of the sixth vertelnit. The artory takes at buro or less forward direction, passes thongle the kidney and then toms backwards. The artery has no relation with the diork red mascle. The posterior pair is very thick, nearly as thick ats the dorsal aorta or a little thicker than it, probably homolorgous to the whole cutancons artery of the 'Thmmidare. The pasterior pair of cutanoous arteries taties an obliqnely upward and backward dircetion, and makes its appearance at the surfince of the bedy, Wetween the intermascular bones of the fourth and fifth rentebrac. The antery runs a little above the lateral median line, and seems to vanish in the caudal part. The cutancous artery seuds off segmental brauches to the surface of the body, both dorsal and rentralwards, ad axially rery numerous arterioles to the dark red portion of the lateral muscle. These arterioles are arranged in two diverging sheets to invest the dark red portion of the lateral muscle. In at rare abnormal case, I found the pusterior cutameous artery joined to the anterior entancous antery, but in such cases the abormality is fond in one side of the lardy only:

In the Plecostei subspinal vascular plexus or the kurochiai, the vascular plexns in the haemal canal, deserve attention. In Neothumus rertical arterioles originate as short parallel umerons ressels from the dorsal anta in the same way as the accompanying reunles originate from the cardinal rein and these tugether make a black red rod as thick as a thumb. These umerons arterioles mite again to two pais of segmental arteries in each body-segment, ond along the intermuscular bone, the other along the ueural spine. Iu the Katsuwonidae the subspinal rascular plexus does not lic just beueath the rertebral colmun but is more or less separated from the latter. In Eullaynnus innd Auxis (fig. 2) the dorsal aorta is so remarkably separated from the vertebarl colmm that the kurochiai is bent like a low. In Auxis the arterioles are few in number and the sulspinal vascular plexus is much degenerated. The oblique segmental arteries from the dorsal aorta nourish the dark red portion of the lateral muscle from the axial side.

The coeliaco-mesenteric artery (fig. Q) is a chief mpaired visceral artery originating just before the right pharyngeal muscle. The artery passes the right side of the muscle and is dirided into three branches. I shall distinguish them as the first, second and third branch respectively; numbering from the left dorsal side gradually to the right rentral side. The fate or destination of these branches are very different in different species, especially in the Plecostei. The first branch is short and simple, but the other branches are large and branching. In the Scombridae and Cybiidae the first branch nourishes the oesophagus and the left dorsal side of the stomach. The second branch is divided into two branchlets, one of which nomishes the right dorsal side of the stomach and the air-bladder, when it is present, and the other the spleen aud intestine. The third brauch the reutral side of the stomach and the pyloric coeca. In Thumnus the first branch is abortive, and nourishes the oesophagres only or is entirely absent. The second branch is divided into short parallel numerous arterioles in the right lobe of the liver and then reunited to about three branchlets, one to the air-bladder, another to the right dorsal side of the stomach, and the remaining to the spleen, pyloric coeca, and intestine. The third branch runs along the abaxial side of the liser and is also divided into unmerous arterioles in the middle and left lobes of the liver. These arterioles are reunited into principal canals, one nourishing the left dorsal side of the stomach, and the other the ventral side of the stomach, pyloric coeca, etc. In 77unnus orientalis the third brauch is subdivided into two before splitting into numerous arterioles. In Perathomus the first branch nourisbes the cesophagus and the left dorsal side of the stomach as in the Scombridae and Cybiidae. The second brach nourishes the air-bladder, right dorsal side of the stomach, spleen, and intestine; while the third brauch is divided into two branchlets, one into the liver the other to the reatral side of the stomach, pyloric coeca, and intestine. In Neothumus nearly the same as in Parathumus, but the artery to the liver is mueh more degenerated. In Katsucoonus the first branch nomishes the oesophagns, left dorsal side of the stomach, but in Euthymnus and Auxis it is very sloort, slender, and nourishes the oesophingus only. The second branch nourshes the right dorsal side of the stomach, spleen, and intestine, while the third brawch nourislies the liver, ventral side of the stomach, and intestine. In the Katsuwonidae the hepatic artery runs more or less formard near the root.

IEENAL ORGANS.

The kidneys are well developed in the Scombridno and Cybiidac. They are paired, very thick at the sides of the pharyngeal mmseles, but behind theso museles they are blended together and become gradually narrow towards the candal portion. In Sarda orientalis the kidueys are mnited hefore the pharyngeal muscles. The organs reach the otic region of the cranimm, then ran along the rentral side of the rertelral colnmu, between the base of ribs, and lie above the peritoneal membrane of the air-bladder, when it is present. The organs often reach the anus posteriorly. They never enter the haemal canal. The kidneys are reddish in colour, which become paler in preserved specimens and minute black spots may be seen scattered all over them. 'These are due to the pigment cells acenmalated in glomernles. In the Plecostei the kidneys aro generally concentrated in the pectoral region. This is especially the ease in primitire forms of the order, for instruce, in Thunnus germo and Th, orientalis the kidneys are more or less ring-shaped, as the organ of one side is connected to the organ of the other side at the anterior and posterior sides of the pharyngeal muscles. In these forms of tmnies a slender kidney-like organ enters the hivemal canal and roms more or less posteriorly, just below the rertebral column. The organ is thickened at the root of each haemal arch. Tn other forms of tunnies the kidneys are elongated backward along the dorsal wall of the abdominal carity. In the Latsuwonidae the oblong space for the passage of the plaryngeal muscles is divide a by a median longitudinal bridge of kidneys. The seemingly reual organs in the haemal canal are detached from the main body in Fatsurconus. In Auxis the renal organ is not fond in the haemal canal. It is not developed in the cephatic recrion, aud its posterior part is divided into two long slender bodies, rmuing on both sides of the posterior cardinal rein.

In the Scombridae the ureters are nearly separate from each other, in the Cybiidae they are separate fur the most part, but are united to a short median duct, before opening to the minary bladder. In the Thmnidme they are nited to a long median duct, but they are nearly separate again in the Katsuwouidae. In Thunnus germo two weters meet nearly in a transverse line, perpendicular to the median united duct, aud at the middle of the former there is a short
median septum. In Thomnus orientalis the two ureters meet in a figure like U , and in the other forms of the Japanese tunnies they meet like the fugure V. In Fatswoonus the two ureters run quite new by in the pasterior slender part of the kidneys, and finally unite to a median canal of some leugth. In Euthynous and Auxis the two ureters are nearly separate.

The urinary bladder is rariable in size, form and position. Generally it is small and lies behind the peritonemm, but in Acanthocylizm, Neothumus, and Auxis the bladder is large or much elongated and is found in the abdominal carity, suspended in the meseutery or between the two genital glauds and abore the rectum.

REPRODUCTIVE SYSTEN.

In the scombroid fishes the generative organs are pairel, large, and elongated sacs on the roof of the abdominal carity, suspended in a fold of the peritonenm, and extend along almost the whole leugth of the carity. The organs on both sides are symmetrical, nearly equal to each other in form and size. In Auxis the generative organs, both male and female, extend backwards along the side of the anal fin. This backward extension is not so marked as in the case of the female flatfish, but its canse is the same-the narrorness of the ubdominal carity. In scombroid fishes the genital glands generally see:u to ripen in the third year of growth, that is when the fish is tro years old.

The testes hare trenchant edges, hence more or less lanceolate in crosssection, and when ripe, milky white to light yellowish in colour. The oraries are fusiform, more or less romdish in cross-section, and rellowish in colour, and greater in rolme than the testis. In tmmies the gouads grow rery large, attaining sereral kg . in weight. As the eggs in them are minute as in other fishes, their number is no doubt enormously larse.

Scombroid fishes generally spron in the wimm season, and in the open sca. So far as I. know, Scomber joponicus, Cybium niphonium, and C. Forconum are the only species which spawn in om bays and inland seas. Spawned eggs and larvae of the plecostean fishes are still unknown.

The generative organs of hoth sides coalesce near the hind eul, and the lumen in them unite to it short and wide duct, which opens as a trausverse slit on a papillit, lekind the ams.

Biology and Ecology.

H. BI'I'.

The scombroid fishes are satic to be priacric, but only the fishes of the Plecostei are truly pelagic. The mackerels, Scomber and liwstrelliger, live in littoral waters, and most scerfishes tro. The tmonies and bonitos, however, feed, spawn, and fow in the open sca.

Scombroid fishes generally swim to the shallower stratio of water at night, and return to the deeper layer in day-time, probably following the morenent of the plankiton, and also that of those aminals which feed on plankton. Thans the twilight is the best time for fislung these fisloes.

Srombroid fishes swim near the surface of the sea, in and after the sparming seatson. These fishes are alert and rery difficult to catch. They appronch the shore in warm seasons, and retire to deeper layers of water in off-shore grounds in cold seasons. When a sontherly wind blows, the common tunut comes near the surface of the seat, and also approtches the shore. Until recently, no drifters for the tmmy were fomd ont on the seat, when cther winds prevailed. Lightning and the sound of thmoder are said to frighten tumies and bonitos, driving them into deeper stratib of the water.

Tumnies :re often said to resort to the neighborhood of deep rocky banks, rising to cal 200 m below the suface. Especially Parathumus mehuchit swim in rather deep layers of water, about ono lundred metres below the surface. Thumns germo is said to doscend to a deptl2 of ca 80 m , while the other tomnies can descend to a depth of ca 50 m . Tn summer, schools of Thunnus onientalis and Neothunnus macropterus sometimes swim with the tips of the dorsal fius and the aual out of the water. Bonitos swim quite near the surface of the sea, and seldom descend below forty metres.

Sconbroid fishes often leap ont of the water, or show the posterior portion of their body, especially wheu they are feeding. Puratloumus metrachi is said to have a peculiar habit of leaping ont of the water at day-break.

Scombroid fishes rery soon succumb after a violent convulsion, when caught and taken out of the water. They are very difficult to keep alive, except the common mackerel, as they dart against the fence, when confined in a narrow space, and they can not exist in water of low salinity. Tumnies desert
littoral grounds after a heavy rain, and approach the coast in summer, after a long draught. In the Bay of Tenoura, at the foot of Mount Fuji, tunnies are sometimes kept alive, sumrounded by a wall of strong netting near the shore.

Pelagic seombroid fishes often crowd under drift wood or algae, or follow whales or ressels. Acanthocybium solancleri is attracted to bundles of wood moored at the surface of the sea, purposely devised by fishermen.

Fishes of the Cybiidae are roracious and audacious. They strive to get wut of a pound-net, pushing their head through the meshes at the bottom at night, though in the day-time they are afraid to pass through meshes.

Plecostean fishes are especially timid, as was observed by previous writers, and do not dare to pass through the meshes of a net, until they are confiued in a narrow space, thongll the meshes are wide, expanded, and large enough to be passed freely. Neither do they enter a dark cose, nor approach rery near a rocky precipitons wall. When some fish are entangled in a net, and are struggling to escape, the remaining fish of the school are scared away. It is, moreorer, told that they are terified and disappear wheu they see blood. Thus the throwing out of bilge-mater, contaminated with blood, is not permitted at the fishing ground, and with the same reason long lines of sharks are considered to be disadvantageons to bonito fishing, as sharks shed blood when hooked.

Generally the male fish come first, in the middle of the fisling season tho mmber of both sexes is nearly equal, and at the cad of the season the female fish predominate.

The labits of the scombroid fishes are often inflnenced by ticles. Mackerels often float towards the surfice of the sea, shortly after the flood-tide. Some seerfishes are said to be rery active in the ebb-tide, and Gymmosarda muda is said to bite looks well, when there is no tidal curent. Some tumnies are said to resort to the shore with the flood-tide.

Bonitos, oxcept Euthynnus yaito, are said to be rery elerer in making a school of small fish rery dense, by swimwing round the sehool of the victims, and devoming stray or forelom individuals gradually. On the contrary, tumies and seerfishes swim into a sehool of victims, and disperse them. The feeding of a fish seews not always the same throughout the year. The striped bonito is said to decline to take bait in certain seasons, generally in mid-summer.

FOOD.

Fish belonging to the geuus Rastrelliger seem to feed exclusively on plankton, chiefly copedpods. Scomber is also a plankton-feeder, but its food differs in different seasons and localities. In bays the fizh is omnirorous, and feeds near the bottom; but in the open sea it seems to feed near the surface. Fishes of the Cybiidae are roracions, and feed chiefly on surface-swimming and school-makiug fishes, such as sardines, anchovies, sanrels, mackerels, saud-oels, \&c.

Tunnies are also voracions, and most of them feed chiefly on plaukton in the open sea. So far as I know, Neothmmus rarus seems to be the only specie; which feeds near or in littoral waters, and chiefly on fishes of moderate size. When tunmes derour fish of somewhat large size, they break their vertebral column near the neek or the tail, probably with their strong jaws, most likely to prevent movement of the engulfed fish in the stomach. Once I fonnd a specimen of Lepidopus, about two metres in length, in the stomach of a tunny. It was fonnd bent sereral times in the stomach. A full-grown tunny can swallow bonitos or young tunnies under 40 cm in length. The smallest animal foumd in the stomach of a full-grown tnany measured abont 5 mm . in length. Judgiog from the position of food in the stomach, we muderstand or rather imagiue that tunnies swallow fish sometimes from the head, and sometimes from the tail. Tonnies feet? on liring animals, but they are enticed by deceased or preserved baits as well, and even to artificial batis when they are moving in water. The food of bonitos is nearly the same as that of tumnies. However, bonitos can not swallow large animals as tunnies do. Many interesting forms of the plankton and immature fish, etc. may be formd in the stomach of tunnies and bonitos. I have obtained two fine specimens of Mola mola, very large phyllosoma of Scyllarus, immature specimens of free-swimming stages of Scyllarus and Pamulirus, Onychoteuthis, a great many specimens of Wutasenice scintillans from the mouth of Tokyo Bay, several species of Pleraclis, Acanthurus (immature), Cluctoclon (immature), Maurolicus, Argylopelecus, Holocentrum, Ostracion, Caesio, Exococtus, Sergestes, Accuthcphyra, different kinds of Heteropoda and Pteropoda.

Scombroid fishes feed on swimming animals, and do not prey at the bottom, nor at a wall nearly perpendicular. They swallow the food, darting quickly towards it, and swim away more or less downwards, therefore they are forcel
to wake a large circuit if ther intend to take foor again near the same spot as before. Generally they hesitate to swallow food, when it is too large for a mouthful. As a rule ther pursue food into slallower strata than those they are accustomed to. While feeding, fishes in a school swim in different directions as ther like. A fish which has taken plenty of natural food, is easier enticed to baited hooks than one with an empty stomach. This may bs explained by the firct that the fisl become frenzied from competition when feeding in a schol, and bite any object, suspended or moring in the water, but when they are not feeding they are rather shy and suspicious, and thus do not easily lite baited hooks. When tunnies bite baited hooks, they swim downward at once rery quickly, abont 200 m , more or less obliquely, so that tunnyfishemen are prorided with a strong line, longer than 200 m .

DEVELOPIENT ANT GROWTH.

The development of mackerels and certain seerfislies cata le studied; lout that of the plecostean fishes is rery dificult to study, as these fishes do not approach the land, at least in the sparrning season. I have not yet succeeded in obtaining these fishes with wature reproductive elements. Consequently the larval and postlarral fishes of the Plecostei are still muknown. Two small specimens described and figured ly Jütren (53) and identified to be the young of Thum a alalonge are the smallest examples, so far as I know ; but most probably they do not beloug to the I'lecostei, as the foremost spine of the first dorsal is remarkably shorter than succeeding spines. They would most probably he inmature forms of the Cybidae, as the jaws are loug and the teeth large. An immature specimen canglt in a tow-net during the Challenger Espedition, betreen the Admiralty Islands and fapan, and described ly Güxther (32) is probalby a plecostean fish.

In May, immature fishes of Scomber, japonicus alont 45 mm in length are canght together with colourless fries of the sardine, anchors, etc. near the coast on the Pacific side. These immature fishes have slenderer body, rounded snout, teeth in the lower jaw in two rows, but remakably fow in munler. In September they grow to the

Fig. R. Somber japmicus. Nat. size. length of about 12 cm , in October 15 cm , whd when one year old to 18 cm . I am
inclinal to believe that the yonng fsh, whont 27 cm loug we two gears old, and young ones about 35 cum me then years okl, and sexumly anture. Thas the growth of our common mukerel sems to be nearly the same as that of Scomber scombrus of the Atlantic. However, this rate of growth is slow comparel with that of other scombroid fishes, and needs confirmation.

So find as I know, egrs of the scombroid fishes are pelaric, spherical, and ench egrg is provided with a pretty large vil-glubule. There are very little distinctive chatacters in eggs of different species. Eggs of Cylnum niphonium we very large, the largest munag the pelagic eggs, fonud in the Inland Seat in spring.

In 1920 I fomd a lavar of Cylium niphonium, 8 mm in length, among a bunch of immature forms of varions fishes from the bunt of a seine, hanled to catch the adult of that species, on June 7th, in Tiagawa-ken. The larva has a very long shont, powerful jaws with large teeth, preopercle with three spines, very short but broad precandal prtion, pigment spots on the head and along the ventral median line of the caudal portion. An innmatme fish of 33 mm in length has a larger head and brouder body than the adult. The preopercle is

Fig. S. Cyluium niphonirm (immature). 4/3. armed with about four spines. The pectorial is small and rounded, and the posterior portion of the second dorsal and anal begin to be separated to finlets. In this specinen the precandal purtion was elongated to a nearly similar length as the e:udal. The first dursal is higher than the second. An immature fish of 100 mm , caught late in July, 1914, has a still broader body thau the preceding. The first dorsal is lower than the second dorsal, and the candal is much

Fig. T. Cybium niphonism (immature). Sat. size.
developed. The general appearance is quite similar to that of the adult. The colour markings are howerer wauting. In the immature fish below this size
the outer margin of the first dorsal gradually descends and its spines are 20 or 21 in number instead of 19 in the later stages, due to the depression of posterior spines. In October the immature fish grows to a length of ea 27 cm , and attains all the specific characters of the adult. As the fish grows the spines in the fin become longer, especially at the posterior part. One year old fish is ca 50 cm long and immature, while a two year old fish is about one metre and is mature.

Cybium koreanum spawns in Jone and its immature fish is about 24 cm . in September. It has a larger head, second dorsal and amal lower than the adult, and a few, scarcely visible markings in a row, just below the lateral line in the precandial region.

An immature fish of Cybium commersın, 13 cm . long, was canght on July 27, 1916 near Kcelung, Taiwan. It las a larger head, remarkably broader body, shorter snout, and larger eyes than the adult. The first dorsal is ligher and its hind portion remains colomless. About ten oblong markings are found at the back. They scarcely pass down the lateral line. A little larger specimon in the Musemm at Taihokn measures 22 cm in length, and has larger eyes. The colow markings are elongated downwards, but they are not continuous, more or less bead-like, and new markings are added between the old.

An immature fish of Sarda orientalis, 17 cm in the total length, was eaught at the end of April, 1922, in a large dip net, called "boke-ami," in the Harbour of Kushimoto, Wakayama-ken. The net was used at night under in artificial light to catch fries of the mackerel. The immature fish of Sarla has about twelve transverse bands. In eacli of these lands we find about six

Fig. U. Sarde orientalis (immature). 2/3.
longitudinal bands, which ascend more or less backward. Pectorals, second dorsul, and anal are very small. In September, 1900, a little larger inmature fish, 23 cm in length, was caught m is ground seine on the east const of

Aonori-ken. 'Thus specimen is nearly the sume as the precerling one, lont it is a little hoader.

An inmature fish of Acanthocylum solomelri, 27 cm . in the total longth, was eatught ofl Dilisaki, Miye-ken, in September 1917. It has about twenty transerse biuds. Those in the precaudal region fade awny near the ventral median line, but in the candal region they are manifest from the back to the rentral median line.

The growth of tumnies scems to be rery rapid. The common tunny; Thunnus orientalis, most prolably reaches maturity in the third year of age. Thunnus orientalis, ea 22 cm in the total leugth, is the smallest specimen I have scen. It has ten to fifteen faint transerse bands which fide toward the rentral median line. These transrerse bands are divided into two at the rentral part. Sucl suall individuals are fonud in August and in September: Some of them grow to a length of 30 cm or more. By mext spring they grow to a length of ca 60 cm (fig. 43). When two years old they are about one metre in length and eleren kog. in weight. Three rears old fish is considered to weigh alout fifteen kg. The growth of Themnus germo and Neothunnes

Fiz. V. Euthynnus yaito (immature). 2/3.
mecropterus in the frist and second years seems to be nearly the same as that of the common tumny；but in the young form of Tlunnus germo reticulating longitudinal bands are found，instead of transverse bands．

The suallest specimen of Katsuoonus pelamis in my collection is 21 cm ． in the tutal length．It has a slenderer body than the adnlt，three dark oblique markings at the back of the caudal portion，and one faint longitnlinal biand under the lateral line．This specimen was caught in Angust，1916，at Okinawa－ken，and seems to have been a fish hatched during the same year． The smallest specimens of Eutlynnzes yaito in my possession are 13 cm in the total length．One of them was sent by Mr．Cronee．It was collected by the SS＂Gier＂in Norember，1907．The other specimen was collected near Feelung，Taiwan，in 1919．＇They are very slender and have eight or more transverse bands on the side．These bands are nearly vertical and fade toward the vental median line．When they grow to a total length of 19 cm the body becomes very broad，the thoricic spots appear，the bands gradually dismppear from the rentral part，and the dorsal part of the hands becomes oblique．

Mr．S．Tominaga sent me several immature specimens of Auxis maru， which he obtained from the stomach of stripel bonitos，eaught off Awakumijima， Okinawa－ken（Ryukyn）．They measure 11－17 cm．in length．The largest specimen is nearly the same form as the adult，but the specimens， $11-13 \mathrm{~cm}$ in length，are remarkbly slender．The skin is more or less damaged by gastric juice，and the markings are not found in these small specimens，but in the largest specimen，there seem to be some trimsverse bands．They were collected on July 10， 1221.

LOCOMOTION．

About the locomotion of the fishes of the Scombridae and Cybiidae there is nothing new or peculiar．It is quite similar to that of other teleosts． Swift and uncersing locomotion is，however，characteristic of the Plecostei． It is impossible for fishing loots，ruming about 10 knots ian how，to accompany is school of the striperd bonito in progress，so that fishermen throw out live lonits to attract and thas to retard or stop the progress of the school．Plecostean fish scarcely bend their hody in loomotion，except the candal perluncle，as will ensily be understood from the form and construction of the

 pitelex somad proxuced ly the fish in its denth-struggle on the deck of a boat when cemght. If a latuding laok is driven by mistake into the cmudab petmele of :t tumy, we can not lold it, as the hands leceme paralyzerl from the violent convulsion of the maseles. Neither catn wo hold, even for a few seconds, is landing look driven aceidentally into a tumy swimming away from our hoat. lieally honitos and tumies swim like meteors. The troll-line for tumnits as well is the line attioheal to :t lumpon-head used in tomy-fishing require it reserve of at lewst 200 m , thonght the troll-line for a seerfish lus ab reserve of only 30 m on often none at all.

MICIRATION.

The seombroid fishes, especially the plecostems are guod swimmers, and as they are vorabins, they ane forced to swim about incessmatly in searely of forcl. Like many other fshes, scombrid fishes gencrally swim in shalluwer strats of water at night, and scek the deeper stratio in day-time. Thoy migrate more ar less according to the change of temperatiure. In the cold season they seek lower latitudes, in summer they go forther north; but Cybium commerson seems to be exceptional, visiting the western const of Hondo in the Japan Sear in winter only. The migration of the striperl bonito is also remarkable. On the Paeife coast the fish migrate with the wam curent aud in summer they reach the sontheastern coast of H okkitido and remain there till antumn. In their northerly mignation they :pproach the coast, but in moring sonth they swim off-shore. In the Japan Soa they take a quite different conse, approneling the eorst in their sontherly migration in the cold sarson. The migration of Thanms orientalis and The germo in the Pacifie coast is nearly the same as that of the striped bonito. Thumus orientalis in the Jiupan Sea approaches the coast in going north, in carly summer.

Generally speaking of scombroid fishes, lauge and old are eaught at the beginning of the fishing season, while at the end of the season only young and small ones are fomud.

DISTRIBUTION.

Scombroid fishes are generally widely distributed, and many of them are really cosmopolitan ; but some of them are confined to limited districts. For instance Cylrizm Roreanum and Ncollunnus rarus have restricted distribntion. Gencrally speaking the mackerels and seerfishes which have a wider range in vertical distribution have a narrower range in horizontal distribution.

Scomber japonicus is very widely distributed. It is said to occm in the Pacific as well as in the Attantic. In the Pacific it is found on the Isiatic as well as on the Americau coasts. However, the fish is not found round the oceanic islands, such as the Ryukyu Islands, Ogasawara Islands, and South Sea Mandates. Adult mackerels migrate in summer to shallow waters, ca 20 m deep in a bay, but retire in autumn to deeper waters of $40-100 \mathrm{~m}$, and in winter to off-shore banks, ea. 200 m in depth. Gencrally mackerels are not found in deeper strata of water than ca 100 m . In waters within the 100 m live of depth, mackerels are found $1-4 \mathrm{~m}$ above the bottom. They come near the surface in the erening, and may be attracted to shallow strata within 40 m below the surface.

Rastrelliger is confined to the Rynkyu Islauds in our comntry, but it is widely distributed in the tropical seas.

In the Cybiidae, Grammatoreynus is found only in Ryykyn Islands in our comutry, but is widely distributed in the tropical region of the Indo-Pacific. Cybium niplonium is fonnd in the littoral waters of Japan, Korea, and China. Cybium koreanum is restricted to the west coast of Korea. It is remarkable that this species ascends the brackish part of rivers. Cybium commerson is regularly caught, though in small numkerz, near Senzaki, Yamagnchi-ken, in antum and winter. This species is caught in abundance in Formosa in spring. Cylrium guttetum is found in our waters only in Formosi. Cylrium chinerse is found in Japan and China, frequently near the Forean Channel ; but they are rather rare in other regions. Acanthyocybium solandri is a pelagic species, nomadic in habit, and inhabiting warm seas. It is found at the month of Tokyo Bay, in the east, and in the south western part of the Japan Sea. Sarda orientalis is aboudant in Kymshyn, but it may be found in Aomori-ken in the north, both off the Pacific and the Japan Sea coasts. None have been found in Formosan water:s. I do not know whether the Indian species of $\operatorname{Sar} d x$ is identical
with our species or mot. 'The Mawniian species looks quite similar to our species in external characters ; lomt minnte examination is necessary for itentifieation.
S, far as I know the plecostean flshes we most rich in number of species in our waters. Among our tmmies, Thumms oricutalis is rather widely distributecl. Veothunnus remus is fomud only in Kyushytu and the south-western part of the Japau Siea. In the Japion Sear we fiud only three species of trmiy; Thmmus orientatis, Neothumus mucropterus, and Neathomus zurus. The latter two species, howerer, are very few in number, and there is no ragnlar fishing for them. All the species of tumies fonnd in the Tapan Sea live near tho surface and appronch the coast. The tmmies inhabiting off-shore grounds aud descending into rather deep strata of water have not yet lwen fond in the Tapan Sea. This is luost probably due to the finet that the temperatere of the sea is too cold for these species. Bonitos are also found in the Japan Sea; but rather few in number, and Euthynnus yrito is vory rare.

The scombruid fishes with the air-bladder lave generatly a wider range of rertical distribution than those withont it. The latter group of fish is often restricted to the surfice of the water. O. they are near the surface in some seasuns, and descond to deeper layers of the sea in other seasons. 'They can not chauge their abode suddenly, but when the change is gradarl they can endure it. Most scombroid fishes swim in slabllow strata of water, but tonnies generally, especially Parathumms meliachi, are found in decper stratia of water than bovitos. Bonitos and voracions species of the Cybiidae frequent the surface of the sea and are readily attracted to artificial baits. These fishes are rarely found in deeper strata than about 80 m .

The scombroid fishes are found in warm seas, the majority of them belonging to the tropical and subtropical regions, and most of them are very widely distributed. They swim very fast in search of proy, and many of them have their own blonl-temperature as ligher aninals. Our common mackerel and the striped bouito are cosmopolitan species. The long-finned tumny (Thunmus germo) and Acanthocybium solandri, too, seem to be widely distributed, though is critical determination of the species from different parts of the world las not yet been made. The following tables illustrate the distribution of scombroid fishes in our waters and adjacent regions.

Table slowing the trmperature of watere in which semblornid fislies are found.

Table slowing the rortical distribution of scmbroid fishes.

The salinity of the water, most suitillo for our scombroid fishes, differs verygreatly for different species. Generally speaking fishes of the Scombridae and Cybiidae are adapted to water of lower density, $1.02-2.025$, while plecostean Eshes prefer water of higher density, 1.025-1.027. Cylurun lioreanum can withstibul water of very low density. Of the Kitsuwonidae, species of Auxis are sometimes found in littoral waters of low density.

ENEMIES AND PARASITES.

The gigantic species of the scombroid fishos have few enemies. Wheir most dreaded enemies are dolphins, especially the killer. Fillers often await the passage of large schools of tunnies in a strait, such as Tsugann Strait, aud attack them furiously. Favourite resorts of killers in the strait are near Cape \bar{O}_{1} a and Cape Tappi. Small species and immature forms, however, have many enemies-seals, dolphius, spear-fishes, the sword-fish, slarks, and larger forms of their own or allied species. When we fund dolphins in places, where mackerel fishing is actually carried on, the mackerels very soou desert the ground, and do not come back fur some days after.

External parasites are mostly copepods and trematods. They are funm on the upper surface of the pectoral fin, the inner side of the opercle, gilllamellae, in the nasal cavity, the mouth carity, etc. These parasites are, as a rule, not numerous; but sometimes copepods are found in large batches. The Octocotgle is a minute parasite found anong the gill-lamellae of Scomber joponicus, but the Hexacotyle is large and is found among the gill-lamellae of Parcthumus melachi. Tristomun lives in the nasal carity of tumies.

Internal parasites are chicfly trematods and nematods, living in alimentary canal, circulatory system, muscles, tissues of the viscer:t, etc. Species of Distoma use Acanthocylvium, tumnies, and bonitos is hosts. Rhynchobothrium is found in the flesh of Katsuronus pelamis rather abundantly in summer. A species of the Filariadae geverally inhabits the superficial dark red muscle of Purathamus metuchi. 'Jhe farasite changes the colonr of the muscle, which becomes wore or less yellowish. Once I found a rery long nematod in the cutaneons artery of Euthemoms yurito. Ofteu is species of nematod is found in the dorsal nortin of Neothanaus macropterus; the parasite canses the tissue of the canal to bocome thick and tongh, giring it at the same time a yellowish tint.

FISHERY.

Fishing of the scombroid fishes has laren pursued in omr islands since the stone age. Bones of these fishes lawe been fonnd in shell-monnds in fiflerent localitios of our empion, as I have sabid already in a paper ou the prelistoric fishing of onn comutry (42). Boncs of Thumus orientalis ire most ablondant, and those of Firtsuconvs pelamis and Scomber, japonicus are frequently
met with, but thase of fuxis and Cybiam miphoniume atre rather rave. Aiter the puldication of the praner, I obtaned throngh the kiudness of Mr. Geasmecm Texpo at spatr-head, 214 mm long, backing at barl, carved from a candal furray of a tmung. He collected it from as shell-mound of Niyagi-ken. A large candal vertelna, receutly discovered hy Mr. Akira Matsemuri in a shell-monud of Ogide, liynkyn, belongs most prolnably to a species of Gymurisuche. A few vertelraw of Einthynus yeito were also taken from a shell-monud of Ilat, Ryukyu, by Princes Rasmiwa Ōxama.

In some poems composed in the perixl of Tempyō-Shön (749-756) and cited in the "Manyeshyu", we lemm that the tumy was eaught at that time with spears as well as hy means of hook and line. In the "Yengishiki", it dassicat wok compiled between 900 - 927 , we find hanns of several kinds of food, prepured from the mackerel and the striped lxwito. These proxlucts were paid as trilute to the Imparial court :and the Govermment from several provinces romed our consts. In that classical work, names of tumies and sectfishes are not mentioned, though tumies at least were caught before that time. From the name of "sawian" " for our common seerfish, we can guess that ther lase long been known to us, as thut name in our old laggange means manow abdomen, and it is just as old as the name "saba " for the mackerel, meaving narrow or minute teeth. From the twelfth century on, on account of many wars, must industries were disturbed and retrograded, until peace was restored by the consolidation of at central govemuncut in the sevententh century, under the control of Hideyosin Tuyotomi. From an anecdote, howerer, we keam that an ingenius pound-net was plamed and constructed in the period of wars in a bay near Sendai by a soldier, who got his idea from tactices in war. The device is a trap, with an elongated powd, the lunger diameter of which is at right angles to the course of the leader. The pormed is well as the leader lave a certain curvature, which prevents the escape of fish at the mouth of the pound, and when the month is closed, at the bent corners of leaders, which are set in different directions. The arpparatus first designed for the eapture of the tumy las recently been employed in mawy other places for the capture of secrfishes, sellow-tails, etc. and it has proved to be superior to other types, having the longer dianneter of the ponnd in the sane direction as the leader. I is really remarkable that a fishing implement invented in the northeastern
purt of our empire was introdnced to other places. Generally the reverse is trine, i. e. implements or methods infented in the central or western parts hare trizelled to the northeast.

Nearly all kinds of fishing apparatus are used for the capture of scombroid fishes, except casting nets and drealges. As many kinds of these fishes form lairge selnols, the apparatus for their capture is gencrally large ; but its height is mostly under 60 m .

As most scombroid fishes are swift swimmers, fishermen try to retard their progress by seattering tole baits. These fishes are euticed to the artificial baits in motion. The mackerel is attracted to light at night, Aconthocylinm to the shade of moored bundles of bambos-stems or branches of Paulouniu imperialis. Fishing with duift-nets is popular, but not good in elear water.s. where other kiurls of mets are also not suitable. In such grounds hook aud line are the hest means for catcling.

Thongh the scombroid fishes are very widely distributed, their food is rer plentiful, and their immature specimens are not molested by men, jet they become gradnally scarce in old fishing grounds. Generally the sembioid fishes do not stay many days in the same place. It scems wise to change the fishing ground from time to time, not adhering to the same locality. Many unfortunate accidents oceur in this hazardous occupation, as the fishing gromeds are rongh, lying gencrally very far from the coast. Morester the fishing apparatns is large, and the cost of the individual fish high, s, fishermen try to hanl in the whole apparatns even in case of sudden stoms, and thms often fail to return to safety in good time. For the future development of the fishery of the scombroid fishes, it is desirable to build swift, sea-roing bo:sts, to discorer grool means of attracting these fishes, and to provide is suitable equipment for prescrving these fishes, as they are mench more perishrible than other kinds. Fishermen detect the presence of these fislues by their leaping out of the water, by the movements of birds, the colour of the water, or peculiar waves o: morements of the water at the smface of the saia. They use the troll line to detect the presence of these fishes in deep stratio of watur.

Hook and Tine.

In the nadkerel fishery there are five kinds of book and line fishery-rox
but line, easting line, ordinary hand-line, troll lime, and long line-of which the thime and fifth are widely nsed. The ordinaty land-line is nembly So forig as the depth of the fishing gromed. The gear consists of a sprealer or a leter, to which a sinker and a bag for tole bat are attached. The loner line is also lapercly used. It is a thift line, suspember from barels by mems of buoy-lines, weighel smetimes with light weights. Homes of these lines aro dressed with small pieces of sardine, saturel, or mackerel itself. The
 The hamd-line gear is assentially like that fom the saurel.

Th the semfish fishery three kinds of hook and live we nscl;-hmed-line, troll lite, and long line. The troll line is most popmiar and efficient. As sectifles :ure romenons, it is difficult to cateln them with baits of lithe motion. Ind as they do mot come to the surface it is impossible to catch them with rods. Good fishing grounds lie near straits or rocky binks. The troll line for the common seerfish is like that for Seriole quinqueratiute. The length of the gear is from abont 40 to 200 m or more. Generally it is $60-100 \mathrm{~m}$. The line is tonved and on it numerons small lead sinkers are distributed. When the line is short the weight is heary: but if it is long, the weight is "omparatively light. The hook has a long shank and is angnlar in form. As secrlishes luwe trenchimet tweth, abont 20 em of the snood is mable of is metallic wire.

In the tumy fishery, rod and line, hand-line, tioll line, abrl long line are nsert. The long line is the most important. As tnunies are big and swift in lexomotion, the gear must be thick, stont, and long. When tumbins lite the look, they swim away at once farionsly and inesistibly, until they wre tired, s.) that the gear must be sufficiently long to allow it. Jines are generally made of hemp, and the lower end of the shoods at least is sarwed with fine thend or wire. To the gears for the truny; sinkers are seldom added. The minimum length of gear for the tunny is 200 m . The tmony long line is rery thick, strung and $400-500 \mathrm{~m}$ long, coiled in it hasket. Each brat sluots ont linas of $10-15$ baskets. The line is als, a drift line, suspenderl at the intermediate denth by means of buoy-lines of $10-25 \mathrm{~m}$. As the grommeline itsolf is thick and heary, there is no need of sinkers. There are two kinds of gamings,--short and loug. The former is ea 12 m , and the latter
ca 37 m . A line from each basket is divided into three scetious by five buoylines, two of which are attached to louth ends. Each section is again suldirided into four by three gangings, the middle of which is the longer one. This long line is generally worked at night. The long line fshery of tumuics seems to have first been tried near the moutli of Tukyo Bay, about three centuries ago, and it was introduced in recent years to other parts of our country. Formerly a pecnliar kind of fishing line for tomnies was used in the contral and westem parts. The line is about 200 m in length, and is wound round a small harel, learivg alrout one quater of the line to lang free. At the cud of the free portion a hook dressed with a live hait is attached. A boat, with a crew of about half a dozen men, carries ten or more lines, which ther leare in the sea to drift. When a tumy bites the hook, the banel sinks at once, but as the wound part of the line becomes loose, the banel arises whirling.

In the bonito fishery rod and line, trull line, and long line are used, but the first is most extensively used. As honitos swim near the surfice and do not descend to deeper strata of water, the fishing with rud and line is simple and conrenient, no sinkers are nsed. It is remarkiblle that fishing of honito with rod and line is done in our country and at Minikor, a small island in the Indian Ocean, in nearly the sane way. For the rod a bamboostem of about seren metres is used. Around the thicker end of the stem a string is roughly wond to present the hatud from slipping. The line is nearly the same in length as the roul, and about 30 cm of the terminal portion is dyed with indigo. The look lacks the ham, and is dressed with living sardine or anchory. Fishermen hold their rods in such it way as to a low the living bait to swim at the surface of the sea. With artifcial bait short rods of about theee and half metres and a line of 120 cm long and of thick diameter are need. While fishing, living fish are thown as tole bait fitr and near.

Drift Nets.

Drift uets for different scombroid fishes differ in the size of meshes, depth, longlh, and the thickuess of the twine. For small fishes drift nets are gillmets, but for tunnies there is no gill-net. Drift nots for scombroid fishes are gencally worked in wam seasous. Drift nets for tumies rul houitos arm
shot at the surface of the sea; lut those for the mackerel and serfishes are suspended in more or less lower strata of water, by means of buoy-lines of some length. 'Ihese mets are worked at night. Sometimes gill-nets tre shot with both ends bent towards the school of fisl and the are driven towards the net. When the thmy strikes the net, it yields to the morement of the fish, and forming a pocket passes over the foat line and is lung back. Thus when the heirht of the tumy drift net is too ligh, the capture is not satisfactory: The tunny drift net is chiefly nserd on the Pacific eonst of the northeastern pirt of Hondo.

Senes.

Seines for scombroid fishes are also eliefly used in the warm season. The size of the meshes is proportional to that of the fish to be caught; but it is rery small in the seine for ant common seerfisl, or its bont is made of course cloth, woren with strong threal. This is to prevent the penctation of the jaws of the fish int, the uetting, lest the seine shonld be damared by their trenchent teeth. Seines for scombroid fishes are mostly $70-85 \mathrm{~m}$ deep, and $506-1000$ or more long. In some of these seines the wings are matle of straw nettings. Seines for the common seerfish are nsed in the Tnland Sou only, and are hamled townds the land, while those for the other seombroid fishes are hanled into bouts. 'Tmnnes captured with seines are Thamus orientelis and Neothumnes macrop'erus. The striped bonito is sometimes captured with seines. Before the development of sines for tumies and bomitos schools of fishes were surrounded with a long wall of net, and then the fish were scooped ont with a kind of large dip-net.

Pound-xits.

Special pound-ncts are built for the capture of Thannus orientertis and Neollamas mactopterus in warm seasons, when these fishes mignate northward. In sone places prond-nets for the capture of tumies in their southern migriation are crected ; but these are very few in momer, and are not so important is the other. 'Ihe pound-nets for Thumus wientalis in their northern mignation are very important, and very abumdant. Other scombroid fishes are also caught in large numbers in pound-nets; but their time of appearance is rather s hort, or occasional, and the expenses of pound-net fishery ean not be sustained by these fislies only.

There are different types of pound-rets for the eapture of tomies developer at different parts of our empire. But as I have stated before, a type callerl "daiboami", dereloped new. Semilai is at present the most advanced one. It resembles in form the madrague of the Mediterrasean, but in our pound-net the bottom is entirely closed with netting, aud there are no dividing walls. The movement of the fish is observed by the boat crew by signals from a watch-tower, on a wooden frame-work, erected from the sa-l)uttom, or on a precipice near by. At the strait of Tsugaru the watelman observes the fish by trausmitted light from the sea, seated under a cover of matting, which partly hangs over the serb, from the side of his boat. In the case of the daiboami, the watehman takes his post just opposite the entranee of the pomid. In other more simple (ases the watehman is seated in the loot at the mouth. When a school of fish coters the pomad, its entrance is closed by lifting up the sunken netting, connected with the loottom of the net, and the bottom is hanled over from one enl to the other, the bunt. The depth of water at the entrince of the pound should be more than 15 m . Efective pound-nets for the tumy aro almont 30 m deep at their cutrance. The size of the pound-net generally in use is 430 m in ciremmference, and ea 150 m in the longer diameter. The mackerel and the common seerfish are conght in pound nets for Seriolu quinqueratiaite or miscellaneons fishes.

Classification.

So far as I bave studied, the matural affuities of fishes can not be ascert ineat from the exmmation of estemal elameters only. Some anthows classify the gemus Auxis near Scomber, as the two dorsals are sepmated, but in reality these two genera are at both extronities of the phylum of the scombroid fislues.

Order TELEOSTET.

Suborder Acanthopterygii.

 Fimily SCOMBRLDAE (s. str.) Günther.> Scombridae (in part), Giinther. 1860.
> Scombrinne, Jordan d Evermann, 1896 ; Starks, 1910.
> scombridue (in part), Bouknger, 1901 ; Regau, 1909.
> Scombridae, Kishinouye, 1915.

Sonly fusiform, and andre or less compressex. Head pointer at the anterior
 padumbe romuded in eross-section, hating no latarat ked. I pair of samall keeds are founl wh eu:h site of the tail. Tateral line gently cmiver, wanting mark-
 facly armalated or more or less etenoid in the pasterior marem. Corselet indistinct. The seabes at the pertmablegion lawe the stune structure is those in the remaining regions, hat the former are ouly a little larger than the latter. 'Ihe furmer are nut coremed with a comertive tissue membiane. I'sistulital Scales rather large, mequal in size. In the ventral lablf of the borly, iows of scoles mun neaty parallil to the ventrat metian line of the candal rexion.

Mouth large with minute tecth. Tongine rery small and suooth. The maxillary is almast entinely comercl by the prembital, abd the supplementary Tone at the pasterion end is ror smahl, slember and insignifeant. Premexillaties are very slender :und weak. Gill-rakers very mumerons, long, slender and num (ompresset, with two rows of fine diverging pairs of long denticles on the immer side. Gill-tancllae rery short at the angle of gill-arches. Branchiostegal menthranes very houd abd owerlaphing each other at the symphysis.

Operche short, and nothed at the pasterion margin. Snlopercle very hamow. Preopercle comparatively large, romeded and expauded at the lower posterion corner. Clavicular ligment is inserted at the posterion end of the exoccipital. Fins not well dereloped. Luterspinons hones are weak and skender. Fin-rias are trassersely articulated. The secoud dursal is lower thim the first and the two dorsals are distinctly separated from each other. The first spine of the first dorsal is shonter than some succeeting spines. The second dorsal and the anal are covered with small elongated scales.

The abdominal carity is ellipsoid in cross-scetion, with the lougre diameter rertical. Peritoueum generally hack. Prlorus ascending. Pyloric cocea mimerons, arranged in may lougitudian rows. They wre rather large, opening directly to the ducrlenum, and are loosely conrected with connective tissine fimes. Alinucntary camal loug and folded. The liver is a small triangular mas:, occupring the left anteriun comer of the abdomish carity. Kidners thin, clougated and divided into two before the pharrugeal muscle, which is inserted into the thind or fouth rertebra, or into both.

Sleceton thin, but firm. Skill eloughted and the greater part of the fron-
tals lies directly under the shin. Occipital crest low and small. Sphenotic and opisthotic not visible at the dorsal surface of the skull. The exclusion of the opisthotic from the dorsal surface of the skull is quite the same as in the Carangidae. Accessory lateral ridges are found on the dorsal surface of the skull. Occipital condyle is remarkably hollow. Paroccipital condyles are oblique, tumed externally, and are separated from each other by the foramen magnum: Articulating facets of the skull with the atlas are on both sides of the foramen magnum and do not form a part of the margin of the foramen. Vertabrae generally 31 in number, they differ but little from each other in form, size, different processes, etc. No transverse process. Lateral ridges in the anterior rertebrae pass giadually to the rentral ridges in the rertebrae of the posterior region.

First vertebra, the atlas, is remarkable in having a pair of large, articulating processes projecting, instend of declining obliquely backward, and also in having the neural process attached to the centrum (fig. 30). In precaudal vertebrae the nemal canal is entirely covered with an arching septum to protect the spinal cord, and is saparated from the ligament of the rertebral columu, occupying the dorsal part of the nemal canal. The newal proces; of the precandal rertebrae is more flexible and more feeble than that of the candal vertebrae. In the caudal vertebrae prezygapophyses and the anterior ventral processes are especially well developad. The last vertebra and the hypural loones are not consolidated together. No auxiliary intermuscular bones are fome in the cephalic region. Ribs are not much compressed and hang down the abdominal wall. Pelvic girdle very small. Antero-inferior corner of the dorsal flattened part of the hyomandibular is free aud rounded (fig. \mathbf{B}). The free trenchant edge of the palatine is ammed with a row of teeth in the genus Scomber. In the lower piece of the post-claricle we distinguish the broad proximal part with a short slender anterior process, and a long slender distal part. Ethmoid is narrow and produced anteriorly beyond the paired lateral processes. The basibranchiab chain is namow, laterally compresserl, elongated, and nearly straight.

This fimily is more or less relaterl to the Carangidae, in the presence of the allipuse eye-lids, foee spines before the amal fin, transversely articulated finrays, and opercle witl a dorsal notch, narrow sulopercle, etc. But the family is distiuguisled from the Carangidae in wanting characters of the Perciform
fishes－narow premaxillary which is not protractile and wimts a dowsil proctss， nud a small supplementary lane attached to the posterior end of the premaxillary． This fanily has remote relations to the Cybiidize．The genns Crommatoreynus of the Cyhidew：las the sume mumber of rettelone as the makerels，and pylorie coreab are also more or less alike．

Stanks（69）rightly remarks that＂if we woml eliminate the genus Som－ ber，the fibnily（Scombridas in wide sense）womld he much more compact，as it stands farther from the other genera tham they do from each other．＂

Xackerels are rather small，grow to a length of abluat 40 cm ．mid a weight of about one kg ．They swin gromerally in the middle or lower layers of the constal water，and enter into hars and inlets，in shoals．Widely distributex in temperate and sulbtropical remions．
liey to the genera of the Scombrilne．
Borly elongatel and fusiform，romer nad palatines toothel．．．．．．．．．．．．．．．．．．．．．．．．．．．．Scomber．
Body deep and compressed，romer and palatines tothless，gill－rakers rery
long，visible from the gape of the mouth，interspinous bones of the second
dorsnl and the anal nre Hattenel．．Rustrelliger．

Genus Scomber．

Scomber，Linnaens（s．str．）1759；Curier． 1817.
Tecth minnte，in both jaws in one row，on the romer in paired oblique patches and on palatiues in one row．

Ouly two gooxl species ard known，and only one species is found in the Pacific Ocean．

Scomber japonicus Honttonyn．
 Salm．

Figs．1，7，16，2s－30．
Scomber juponicus Hontouyn，Memoires de Harlem，XXX，331，1782；Lacéprete，Hist• ぶat．Poiss．H1．45，1802；Cur．\＆V̆al．Hist．Nat．Poiss．VIII，51，1831；Kishinonye， Sni．Gak．Tf，I．4，Pl．I，Fig．1， 1915.
Scon＇jer pmeumatophomes＇ichlegel．Fauda Japon．，Poiss．91，Tab．47，Figs．1，2， 1850.
Somber saba Bleeker，Vurla．Iat．Cren．XXVII，95， 1457.
Scomber junesubn Illeeker，Verh．Mat．（ien．KXVI，9ti， 1857.
？Scomber tupeinocephetus Blecker，Verh．Bnt．Gen．太゙エV゙，97，Tab．7．Fig．2， 1857.
Scomber colias líshinouye，Jonrn．Fish．Burean，Il，1，l＇ls，I，II， 1893.
D． $9-12,12,5$. A． $1,12-13,5$ ．Vert． $14+17$ ．Gill－rakers $13+23$.
Borly fusiform and compresser，its height wearly equal to the leugth of the head．Teeth minnte，alout 60 in each jarw．The scales in the dorsal half of
the loudy are arraged in nearly horizontal rows, while those in the rentral latf are arranged in olhiqus rows, more or less parallel to the reutral median line of the candal region, i. e. rentral outline.

Air-Jhakler large and fusifurm, pointed at both ends. Pyloric coecin near the pyloms are longer and more mumerons thin those remored from it. The pyloric portion as well as the duodenum are ascending, the latter rus from left t. right, ccempying the moss anterior border of the abdominal carvity. At the right corner of the carity the duodenum passes to the small intestine, which runs backward, then bent forward, at little before the aums, and it is hent again backward. A little behind the second bemb tha small intestine ends and is followed by the rectun.

Alront three small reins from the prloric coeca form the portal veins; two veins rmming upon the dossal surface of the stomach do not form the hepatie portill veins, hat pour directly to the ductus Curieri.

A free spine before the anal is about one fourth the length of the first anis spine. Fach dorsal or amal finlet is sometimes connected with the body ly is membrawe belind it.

Dark branching zigzag bands, alont thirty in number, are found in the hack. The number of these bands is nearly the same as that of the rertebrae and their couse generally corresponds or coincides with the contour line betwreen myotomes. Back bluish green, the colour lecoming lighter towards the tail. Belly silvery white with irridescent lights. Fins greyish more or less washed with yellow. The space between the posterior nostril and the ere is nearly culourless and transparent. The dorsal fins and dorsal finlets, pectorals, and the candial :ure greyish, and sometimes washed with yellow. The rentrals, annl, and anal finlets are colouriess.

Among onr common mackerel we find two different types which fishomen distmgnish mader the names of "hirasabia" and " marnsbla", meaning respeetively flat and ronnd. In the internal structure we cun hardly distingnish them; lat in some external chamacters and habitat ther difier more or less. A comparison of fig. $2 S$ with fig. 29 will give the reader a rery good iden of these differences. Howerer, as there are many intemediate forms between these two trpers of forms, I can not take them as different species. In the typical himsaln we cornt 9 spines in the first dorsal, while there are 11-12 in the trpical maru-
saba. Monower in the former rariety the dark colonerl bands in the bark run down heyond the lateral median line. In that variety the caulal fin is yellowish. The fish lives nerr the coast, bat in deeper layers of water. Its ilesh is more vily and palatalile. In the other varicty which is also called "gomasibon" the dark coloured bands in the lack are found, only alwo the lateral modian line. On that line there is a row of romed spots, and below the line there are numerons grevish spots. It is chielly found in off-shore grounds and in shatlower stratio of water, making larger shoals than the former rarictr.

This species inhahits rather littoral waters, and its range of distribution in our country is rery wide, from Karafuto to 'Taiwan. On onr coast this species is rarely found in layers of water deeper than about a hundred metres. We observe more or less the bathybial as well as latitudiual migration of the wackerel. In spring the mackerel enters the Tuland Sear, and in summer it is canght off Notasiu, west coast of Karafuto. In winter it is caught near Tanegashima, Kagoshima-ken. In Hondo it is canght all the year round, but large catches are expected in summer and autumn. It is also canght abundantly on the east const of Chosen, especially near the Chamuel of Chosen. At the Channel of Chosen, i. c. at the sonthem entrance of the Japan Sea, manckerels make thick shoals in spring and mumn. Two hundred and sixty thousand mackerel with a part of samel were eaught in a hanl with a purse seine. Sometimes two millions of mackerel are landed in the port of Hugroshin near Fusan in one day. Mackerel are canght in twilight when they cone to shallower layers of water. In clondy weather they often rise to the surface.

Adult mackerel approach the twenty metre line shoreward, aud are distribnted a little beyond the two hundred metre line. They are never found in the Kuroshiwo, being found in waters of $10-20^{\circ} \mathrm{C}$. On a cold day and during the cold season mackerel are formd near the bottom of the sea. The optimum density for the mackerel is 1.025 .

Mackerel spawn in May. Fry and the immature fish are fonnd among those of the sardine, anchory, and the saurel. They grow very rapidly, feeding ou fries of other fishes. When they are about 36 cm in length and $\frac{1}{2} \mathrm{~kg}$ in weight, they are ripe for the first time. The age of these fishes is not exactly known. They may be two or three years old. Fish of abont 60 cm long and $1 \frac{1}{3} \mathrm{~kg}$ in weight are rery large and rare.

In olden times fishermen attracted fish with torch-light, but at present electric lamps, acetylene light, etc. are used. 'The light attracts many planctonic animals near the surface of the sea, and they in turn attract the mackerel, and other animals such as saurel, calamaries, etp., gradually towards the surface of the sea. Thus the time used in catching the mackerel is greatly economised. Besides light, tole bait is much used to attract the fish. Salted mantis-shrimp is ciniefly used for the purpos.3. Long lines and drift mets are extensively used in the Japan Sea. Eucircling seines, such as the purse seine and "shibari-ami" are chiefly used in the southern part of Chosen.

The mackerel fishery is carried on on a rather small scale, with hand lines, long lines, or drift nets. The hand-line is most extensively used. The gear consists of a line of about 100 m , two brass outriggers or spreaders, each ca 30 cm long, spreading from both sides of a conical lead, three to four hundzed gr in weight. A worm-gut snood 2 m long is generally fastened to each outrigger, with a small hook at the distal end. A small bag is usually fastened to the lead to hold tale bait. Immatme mackerel or yearlings are canght in large quantities with haul-seines in shallow waters.

Genus Rastrelliger Jordam d Starks.
Rastrelliger, Jordan \& Dickersun. 1908.
Body deeply compressed. Nouth large, maxilliury nearly reaching the posterior edge of the eye. Dentition feeble, the vomer and palatines toothless. Gillrakers exceedingly long and numerous. Intestine rery long, bent sereral times. Found in tropical and subtropical regions of the Inlo-Pibcific.

Rastrelliger chrysozonus (Rüppel).
Gurukum (Rynkyu Is.), murehji (Naha, Ryukyu!.
Fig 63.
Scomler chryinzonus Rippel, ג. W. Fische, 37, Taf. XI. Fig. 1, 1838,
Scomber microlepidntus, Dny. Fish. Iudia, 250, 11. LIV, Figs. 3-6, 1975-is; Kitahama, Jouru. Fish. Burean, VI, 5, I'I. IIt. Fig. 5, 1897.
Scomber kantguth, Jordan and Lichardsen, Mem. Carnegie Mus., 1939.
Rastrelliger chrysozomus, Kishinouye, Sas, Gakn. Ho, I, 8, 1915.
D). $10,12,5$ A. 12,5 . Vert. $13+18$.

In freshly preserver specimens in formalin the back is bhish with greenish lustre in the auterior part, a row of greyish dots on each side of the base of
the dorsals, two greenish arey longitudinal bands above the lateral line, and two grolden longitudinal bands fr m the base of the pertome Cheeks and belly silvery. Two dorsals and dorsal finlets greyish, and the anal and amal finlets rolomtess or tinged with yellow. Peritonim black. Interspinous hones of the second dorsal and anal are flathney, and laterally compressed.

Fig. W. skeleton of liastrelliyer elorysozomas: 3,5.
Membrane comecting tho branchiostegals is very wide. The list branchiostegibl is bent like the letter L. Pyloric cocea are more or less noited to numerous groups at their root, and each gronp to the duodenm with a common orifice. In the caudal rertebrae thin paired ridges are fomen on the ventral side.

It is said that shoals of this fish are olserved on a calio day scething near the surface of shallow water, lusily feeding on minute planktonic organisms. The fsh are vory alert and not ensy to eatch. In the lirukyn 1slands small individuals are canght in summer, and large ones in winter.

Day fomd that the ovar ripen in Miwed. It grows to it length of cat 35 cm .
Widely distribnted in tropical and snltropical regions of the Indo-Pacific. Specimens from southern Chint, Formosa and Truck Is. were examiner.

Framily CIBIIDAE Fishinonye.
Cybiilae, Kishinouye, sui. Gak. Ho, I, 6, 1015.
Body generally elongated and compressad, but plump in the genera Surda and Gymnosarila. Candal petlunele pretty thiek and nearly runded in crosssection, and provided with is large keel on each side. The keel is covered with
elongated scales, except in Sarda. Head elongated with a long suout. Month large, and wide, the maxillary extending leyoud the hiuder margin of the eve. Fyes generally small. Posterior margin of the upper jaw, or that of the jugal in the strict sense, is more or less rounded, as the supplementary lone is well developed. Teeth in jaws are in one row only. They are large, curved inward, and compressed with trenchant edges. Tongue large, rounded, convex, but the glossolyal is comparatively small and narrow.

Corzelet small, wore or less distinct, but its scales are not much specialised. Scales small, generally cycloid, and often concealed under the skin. Sometimes scales disappear entirely outside of the corselet, lateral line, and candal peduncle. Jateral line sinuous, particularly in the posterior portion of the body, and the line is often fromished with many minnte branches (figs 31, 32, 35, 61).

Fius generally small, especially reutrals, but the caudal fin is comparatively large. Fin-rars are not transversely aticulated in the adult fish. Pectorals are comparatively suall. First dorsal low and long, gradually descending posteriorly, and its spines are rather weak. First dorsal has generally a straight or more or lass convex ontline, except in Acanthacylium. The first spine of the first dorsal is shorter and weaker than some following spines. There is scarcely an interspace hetween the first and second dorsal, and the latter is gencrally a little higher than the first dorsal, except in Grommatorcmos and Acanthocylvium.

Peritoneum more or less dusky. Stomach loug and narrow, with 12-30 lougitudinal folds inside. Pyloms opens very near the cardiac portion; it is long, narow, descending, and communicates with a narrow opening at the ventral side new the distal end. Duolenum curved or twisted, enlarged with two or more branching pyloric tubes high at the posterior side, disposed more or less in as whorl romad the intestine. Prloric coeca it the end of the terminal branch of these tubes branch dendritically: Intestiue is often rery long and bent sereral times.

Skeleton is generally spongy; light, and more or less fragile. It is more or less solid in Acanthocylinm and quite firm in Gymnosarda. Skull elongrated, with low and weak occipital crests. Vomer is generally flat, more or less produced, and corered with villiform teeth, except in Sarda and Gymnosarda. Antcrior lateral corner of the ethmoid is more or less produced.

Foramen between the basivaipital and parapphenoid is small and opens newly in of horizantal plano. Parocipital complys touch ach other at the median line, ant the cecipital condyle is only slightly concave. Nimmber of vertebrac is 31-ti-t, generally more tham forty, and varies greatly even among clozely allied species. lielative number of the eandal and precondll vertebrive is also ramiable. Differentiation of vertelnae is a little more intrinced than in the sembridice. Sonetines I fomd abnomme cases in which two or more rertelmae finsed together. Longitudinal gro ses in vertebrae are doep, and thas the cross-section of must vertebriae slow a six-mindiating figure (figs. 8-12). In some posterior prectudal vertehna a short hemal process is formd. Nenal process is broud in some antarior precudal vertebrat, and the process of the first vertebra is free from the centrum. 'I'he last candal vertelora is consolidated with the hymriul bones, and forms a fan-shaped bone with in notch at the median posterior corner. Hypural spine very prominent, but rather small in Sacke and Gymmosarde. One or two auxiliary intermusenlar bones are fomad in the occipital region, where the clawiank ligament is inserted. Intermuscular hones are weakly dereloped at the anterior protion of the hody only, connected by a fow and poor temdons.
(itl-rakers are very porly dereloped in the Cybiida. They are short, not wude compresser, gemerally a little more than ten in muber, and entirely absent in Aerentlucylum. A few gill-rakers are fomed now the angle of the second branchial irch in some forms. Two or more rows of short denticles are fomed on the inuer side of gill-rakers. Rils are fond on the dorsal wall of the body-cuwity, as myotones are bent with acnte angles. Pelvic girdle narrow and elongrated. Gencribly the lower piece of the postelawiele is nearly straight.

The vascular system of the Cybiidite has many eltaracteristics:-development of the remal portal system from dossul segmental veins in the precaudal recrion, orgination of the genital artery from the dorsal arotr, remakable separation of the dorsal arto from the carlinal wein with the intervention of rete mirabilis of the remal portal systom between thom. Uroters of both sides are entirely separated. Kidnoys clongraterl. Mascles nearly colourless, but the median superfieial laterel portion is reddish. This reddish portion becomes rather thick postariorly (fig. 17).

The posterior side of the preoperde is generally a little coneave in Cytium
and Gremmatorcymus. The second basibrauchial is bent downward at the middle.

Neural and hamal spines of the candibl rertebrae are not straight, hut more or less curved. The hatmal arch in the precaudal rertebrae is short, and turned anteriorly, the haemal spine is little developed in the precaudal region.

Seerfishes are generally active wheu the sea is rongh, and the curent strong, also in the morning and in clondy weather. They often loap out of the water, aud when they are impounded in a net, they try to get ont of it through the meshes at the bottom, especially at night. Generally they swin neur the shore, but some of them are chiefly pelagic. Miny of them assemble and form big shoals, and approach the shore in the breeding season. They we predaceous fisl, they feed on smatl fish such is sardines, anchories, saurels, makerel, and sometimes shimps and calamaries. Found in the temperate and tropical seas. Many of them are excellent fool-fish. Small iumature specimens of the Cylbidae are more or less flat and bromd, larger specimens wre thick mad elongated, quite contrary to the case of the Katsuwouidae.

This family is related on one haud to the Niphidae in the reticulate gills, al sence of gill-rakers, small marrow scales, etc. through the genus Acanthocypizm, to the Scombrialae thrungh the genns Crammatoreymus, and to the Plecostoi in the form of the lody, osteological structures ete. through the gencra Surdia and Gymuosurta. This family comprises the Scombrinae, Acauthocrlimae, and Sirdinae of Starks.

Key to the Japanese gem of the Cybiidue.

```
Body alongater, teeth in juws trenelnant, vomeriue teeth present.
    Gill-rakers none, gill-lamelhe reticulated, intermuseular bones inserted on
        ribs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acarthoc! Uium.
    Gill-rakers prestat, gill-lamellae not retictlated. intermuscnlar bowes in-
        serted on respective vertebrae.
            Two lnteral lines on each side of the body ................... . Grammatorchmas.
            Only one lateral line on each side of the body.............................. Chbun.
Hely fhump, teeth in jaws with ronnked edges, vomerine teeth absent.
    Borly rovered entirely with small seales, tongue touthless ................................... Sarda.
    Body maked outside of the corseiet, tongue covered with villous teeth, pala-
        times are also toother . . . . . . . . .............. . . . . . . . . . . . . . . . . . . Gymmosarda.
```


(icnus Acanthocybium Gill.

Acanthceylinm, (fill. 1s 2; Lühken, 181.) ; Tordan \& Evermanu, 1890.

This genus conuprisus a rather aborrant form, more or less relaterl to the Niphiidue. Bedy elongated, more or less compressed, and covered with small mumb scales. Promaxilary produced moteriorly. Preorbital forms the posterior half of the upper jatw. 'Jexth triamgular, compressed, aud closily set. Bramehal hamellare are reticulated at the proximal part. Gill-rakers absent. Intemmscular bones ate insortel on rilis. The first rib) is found on the second wertebra, not on the third is in the other. Moreorer the ril) is shorter than the internuscular bone insented on it. No anxilimy intermusenlar bone, and the first intermasculan bone is inserted on the first rectelnia. Pelvic girdle broard.

Pelagic and predaceons fish of alout two metros. Tropiceal and sulbtropical seas of the Pacific and Atlantic.

Acanthocybium solaudri (Cur. © Vid.)

Kiunasusawaua, ökanasu, okisawart, sumara (Kochi-ken, Kyushy̌u, Ogisutwara Is.), tessubku (Tiiwan), tojinstwara.

Figs. 10, 31, 39.
Cybium solundiv, Cus, if Val., Hist. Nat. Poiss. VIlI, 192, 1 k 31.
? Ciybium serc. l'enuett, Beechy's Voyage, Fish. 63. Il. 2'). Fig. 2, 1539.
 Dobutsu. Kas. XX, 2, Pl. 2, Fig. 2. 190 B $^{\circ}$

Acauthocylum suru, Kishinouye, sui. Gak. Ho, I. 9, Pl. I, Fig. 2, 1915.
B. 7. D. $26,11,9$ A. 11, 9. Vert. 23-33+ $: 11$. Gill-rakers O.

Borly elongated aud compressed, covered with thin small lauceolate seales. Corselet indistinct. First dorsal well developed, descending near the posterior end, but its greater part has nearly the same breadtly. Sccond dorsal and the anal very small. Candal fin lunate and powerful. Latemal line is suddenly and strougly curved, under the middle of the first dorsal. Many rertical bramehes are given off from both sides of the lateral line. Those hanches found in the posterior half of the body are longer and more numerons. In each jatr about $50-55$ triangular teeth, which gradually increase in size posteriorly. Vomer and palatines with villous teeth. First rib on the second vertelra (Stamks (69) found the first rib on the third).

Stomady couical and rery long, reaching it little belind the anterior end
of the rectum．Prlorus short，curved，and descending，duodenum more or less widened，with three or four pyloric tubes，the shortest of them is at the anterior side，and the longest is furthest ramoved from the pylorus．Intestine is narow and straight．Air－lladder long，more or less spindle－shaped， ruming the whole length of the abdominal eavity．Urinary bladder is sery long aud is fond attached to the ventral wall of the air－bladder， and above the rectum in the abdominal cavity．Two ureters unite to a median canal near the end of the blended kidneys，and open to the pasterior and of the bladder．

This species is fomd chiefly in the clear warm water of the tropical and sulitropical seas，and is found at the mouth of Tokyo Bay in the east，from Shimane－ken，Kyoto－fu，and at the north of the southern coast of Chosen．I few examples are nearly always fomd in the markets of southern Kyushyn in summer and autnmo．In the Ogasawara Islands this fish is cut into pieces and dried after boiling，or is preserved in hermetic cans．

Pelagic fish，do not make a school．Ther fued on pelagrie fish and calamaries．Voracions and easily attracted with natural or artificial baits． Canght with trolling lines，which are dreszed with live or sultod saurel，or with spears after alluring with artificial fish，made of wood Cr cauras to imitate flying fish or its own species．Jn Kochi－ken and Kigoshima－ken the fish is attracted to the slade of a large bundle of bamboo stems or brauches of some light wood，moorel in off－shore grounds，specially constructed fin the purpose．

The colom of the fish is steel－blue in the lack，with about thirty dark transverse bands，which are distinct in young fishes，aud in the adult fish when excited．Dorsals，pectorals，and eaudal are blackish，while the ventrals are dusky．

A fish abont ono and half metres in leusth，and abont seventere kg in weight，caught off Hachijoshima in Jme coutained neally ripe owaries．Another fish of similar size，caught of the Ogasawara Islands in August， 1919 contained much more slender ovaries than the preceding．An immature fish， $2 S$ en in the total lenghth was canght by a bonitu－nugler off Ditozaki，Miyeken on Aug．19， 1917.

When spoared the fish darts against the bottom，aud then flouts to the surface doad．

A large sperjes of distomma, ahout 8 cm in length, is ahmost always found in the st muath.

(ieons Grammatorcynus Gill.

(irammatoreyuns, Gill. 18 is: kilunzinger. 189.
Nesogrammus, Livermann ic Seale, 1 S07.
Budy dongatol, compressed, and envered with small seales. Corselet indistinct. Month rather small, maxillary mot reaching the middle of the eye. A deep grave in the skin from the amer of the month, as in many other forms of the mackmel-like fishes. Tongre livasl. Teeth elongatert, trenchant. Villons teeth on the romer and palatines. Two dorsals contimons. Second donsal and anal are divided int, finlets in the hind part, and are lower than the first rlowal. Gill-rakers short and struug. Opercle with a slallow notch at the posterior margin. The lateral keel of the candal peduncle is low and swall, covered with a row of pored scales. Two lateral lines on each side of the brody.

Fish of this geans are als' an aberrant form of the Cybiidac. The insiguificant lieel ou the candal perducle, the rather small mumber of rertebrae, indistinet eurselet, slightly moteled operche, hackward origin of the first dorsel etc. connect this gemes morn or less with the Scominidae; but trenchant teeth, ©ontinnons dorsuls, lauge howd tongue, reual partal reins, short strong gillrakers, deseculing pylorus, dendritic tules to which pyloric cocer open, bent secoud basibramchial, ete. indieate that this gemes is mach closer to the other generia of the Cybiidue.

Only one species is koww fion the tropieal seas and adjaeent waters of the Indo-P'uifie region.

Grammatorcynus bilineatus (Rüppel).

Finsareh.
Fiss 8, 6?.
 36ib, 185.
 113, 1881; Kishinonye, sui. Grk. 110, I, sf. 1915
Vesognemmus piersoni, Evermanu d Seale, Bull. Bur. Fish. XXVI, G1, 1937.
D. $12,9,7$. A. 10,7 . (rill-rakers $5+16$. Vert. $13+18$.

Borly elongated, fusiform, covered with small thin scales. The cheeks are corered with many small scales. Top of the head flat, and the greater part of the frontals is directIy covered by the skin. Eycs large. Voller flattened, villons teeth in a mediau group. Occipital crest low. Opisthotic fories a small portion at the posterior dorsal portion of the sknll. No anmiliary intermusenlar lione. The first durzal interspinous bone scemss to belong to the myotone of the second rertclore, as in the case of the Scombridac. The secoud dorsal and anal are corcred catirely with elougiated narow scales. The rentral or the extermal side of pectorals is also corcred with similar scales. Tueth in juws are small with trenclant cdges, alkont 27 in the upper, and about 20 in the lower. The condyliur facet of the Brasioccipital is slightly loulhw :und oblique. Arti-
culating fimets of the exoccipitals are nearly lumizontial prowsses not mited at the middle, they project binkward wer the eondybur fiwet. The meural

Stomach coxcal, rather short, with alumt nine longitudinal folds inside. Prlorie partion desending, shont, and thick wabled, with almont five longitudinal folds iuside. Deorkamn ohliquely desenuling. Prknic cocea shont, mmerous and braching. The se are wate or lass gronped into seremal clusters, chiofly auranged on special tulmar ontgrowtlis. Pasterior into the dnodenom the intestime is mearly straight. The liver is thre-lobed, the middle lole shorest, While the right lole is longest. Creters are mited at the posterion end of the blended kidegs. Uxinary bladder shall, with it slort dorsal median septum, near the :aterion end. Air-hledder well developed.

The valgar name of this fish is kusamah in Hyukyu, menning prrishable, as the fish decomposes rory quickly. The fish is satd to be inferior in taste. Specinems eximiucd were from the Marshall and Riyuky Islimds. Most of then are about thinty cm . in the total length.

Genns Cybium Curier.
Cybium, Cuvier, 18:9, Günther, 195).
Siomberomorus, Lavépéde, 1802 ; Wressler \&E Fesler, 1889 ; Jorilnu id Exermann. 1890.
Body elongated and more or less compressed, covered with thin swall scales, or sometimes naked outside of the corselet. 'Hop of the head more or less convex. Posterior nostrils elliptical. Mouth large, "ppr juw extending leyourl the hind margin of the eye. Posterior end of the upper juw romaded, and its lower margin nearly straight, leing fonmed by the premaxillary only. Teeth large, compressed, atud curvel inward with trenchant edges. (iill-wikers fers and short. Dentigeron; ossicles on the branchial arch are in two rows. Skull elougated, with its dorsal surfice somewhat flattoucd, and eutirely covered with mascles. Occipital crest luw, but continuons to the madian ridge of the frontels. Vomer projects ass an wrill flat process, and is cowered with villous tenth. Pyloms loug abd slemder. Pryoric enea dendritic, more or less coanse, and open to brauches arranged on looth sides of proric tubnles.

Fishas belongiug to this genus ato generilly liage, and wore in shoals, inhabiting temperate and tropical regions, where industries of some importance
are established upon them. They are generatly good in taste, the flesh being fatty and delicate in structere.

In 1803 Lacépède created a now genus Scomberomorus for a fish of this genus, by examining au inaccurate copy of a sketch by Pcumier, which represented the two dorsals as if they were connected tugether. But afterwards Lacépède fond that his Scomberomorus plumierii was a synonym for Scomber regalis Bloch; so that he withdrew the genus afterwards, and omitted it in the index of his work. Moreorer the following diagnosis of the genus written ly Lacepede is quite inappropriate for any fish of the Cyliudac. The dia:gnosis is written as follows:-
"Une senle nageoire dorsale; de petites nageoires an-dessus et au-dezsons do la quene ; point d'aiguillons isolés au-devant de la nageoires du dos̃".

I have fomd the five following species in our waters. Thongh Jordan and Richardson (29) mention the name of C. Fuhli in their catalogue of Formozan fishes, I was unable to find the species.

Key to the Japrnese species of the geuus Cybium.
Lateral line simple, air-bladder present.
Pectorals pointed, many transverse bands on the body \qquad
Pectorals large nul rounded, indistinct spots in one or two row i.................. chinense.
Lateral line with gumerous fine branches, nir-bladder absent.
Tongue toothed, lateral line slightly undulating.
Height of the boly nearly equal to the length of the head, secon 1 dorsni long. guttutum .
Heiglat of the boly much greater than the kensth of the heal.C. Foreanum.

Cybinm commerson (Lacépède).

Yokoshimasawnra, totuh (Taiwan), ushisawara.
lïg. 36.
Scomber commerson. Lacepede, Hist. Nat. Poiss., II, 600, Pl. 20, Fig. 1, 1800.
Cy fiun commersonii, Cuvier, Regne Anim.; Rüppel. Nu. Fische, 91, Taf. 25. Fig. 1,
 Günther, Cat. 11, 370, 1860 ; Lay. Fish. India 255, 1’l. LKI, Fig. 5, 1875-78; Khnnzinger, Fisch. Tioth. Meer, 112, 183.t.
Cybium mu'tifasciatum, Kishinonye, sui. Gak. Ho, I, , I'l. 1, Fig. 3. 1915.
D. 17, 15, 9. A. 1.4, 9. Gill-maers $1+2$. Vert. $20+24$.

Body elongated, fusiform, highest near the middle part, that is at the origin of the second dorsal, aud nearly romnded in cross-suction. Snont
long. Minute scabes atre found all over the looly. Laterall line mulnatinge, making it markel curve behind the scoond dorsibl. Sealez on the lateral line are ahmut 230 in manler. Tweth in jaws short, triangular, mearly straight, much compresset, and riry minntely sarated as in frenthocylium. There are about 30 in the uppere zurl 20 in the luwer juw. Teeth on the vomer and palatines are very minute, granular and indistinct, as Kluazraciar rightly wmarlied "vieln ranhe Plaittchen." Tlue intestine is very long, and lwat four times. Air-ldadder presint. Lateral licel of the camial peduncle rather luw. Pack greyish blues, and the lelly silvery. Ou side of the body about filty transierse hands which fade grivdually towads the ventral median line. In young speimens these bands are represented as elongated dots on the sides and very few in number. With the growth of the fish, these markings elongate and increase in momber. Month cavity nearly col surless.

The flesh is said to be fritty but firm, and is superior in taste to that of our common seerfish, Cyfium riphonium. Sparming serson seems to le: in spring, when they risit the const of Taiwan in schols. In July immature fishes of abont tea cm . are found in Taiwan, and immature fishes of about trentr cin. in the markets of south China in antumn.

The first specimen canght in Japan proper and identified as belonging to this species was fomud by Mr. Yuzo Nakajma, at the northern coast of Famagnchi-ken, and was sent to me fur identification, in Dec. 1914. The fish measured 126 cm in the total lengtl, and 20 kg in weight. According to Mr. Natidima this species is caught on the Japan Sea coast of Yamaguchiken from October to January, in fixed seines or gill-nets for Seriola quinqueradiota. Only two or three are canglit in ab hanl. Here they seem nerer to come to a ground slabllower than 30 metres.

This species is abondant on the west const of Trawan in winter and spring. It is rery widely distributed in the Indo-Pacifie region, being known in New Guinea, East India, India, Red Sea, Cape of Good Hope, Samoa, and Australia. Mr. K. Mifagami collected may immature specimens in autumn in sonthen China, and a few stragglems we canght on loth sides of the Strait of Chusen in antumn and winter. This species is remarkable for migrating to the morth in cold months and to the south in warm months. Large schools are hauled in Taiwan in a seine or canght with troll-lines, set nets, or drift
nets. Cauglit aboudantly on a caln day after a stroug gale.

Cybium chinense Scllegel.

 uke, uslisawara.
Figs, 34, 40.
?Sombry sinerasin, Jacépede, Hist. Nat. Poiss. III, 23. 1822.
:Cy'ucm chinense, Cuv. it Val., VIII, 180, 1831.
Cyjum chinense, Schlegel, Fauna Tapon., Poiss, 100, Tab. 53, Fig. 1, 1850; Hishinouye, Sui. Gak. Ho, I. 11, Pl. J, Fig. 5. 1915.
Scomberomorus chinensis, Fishinouge. ZooI. Mag. Tokyo, IX, 1. PI. 2, Fis. 1, 1909.
D. $16,15,8$. A. 16,7 . Gill-rakers $2+9$. Vert. $18+22$.

Body elongated, laterally compressed, and lecomes deep rather suidenly belind the nape in some forms, probably the male. Head larre, pointed, and comeare in the dorsal ontline. Suont long. Teeth in juws lauceolate, trenchant, and curved inward, about 20 in the upper aud about 15 in the lower jaw. Villiform teeth on the vomer, palatines, and the tongue. First dorsal rather low, becomes almost invisible in the posterior purt, being hidden in the grove. Candal very large and powerful. Pectorals remarkably large and rounder. The lateral line has a marked eure under the posterior part of the first dorsal, and is mudulating in the candal portion, where the lateral line is fomd below the lateral median line. The intestine is bent a little near the middlle point. Abrominal carity rather high.

Back greenish bhe, belly silvery, and fius mostly blackish. Ventrals and the anal are backish at the margin, but the anal fulets are quite colourless. Iris is silvery or mashed with light brown.

This species attains a big size, being the largest one among our scerfishes. A fish of 2 m in length, and 50 kg in weight is recorled. Too fat, and wore cr less inferior in quality. Nut sought after with a special fishing apparatus. Sometimes muintentionally eanght in nets for other fishes. Rather abundant on the sonthern const of Chosen, two or three dozens of this species heing often canght ou an autumn day, in a pounanet erected at a depth of about 20 m ; and in the fish-market of Fusan gigantic forms of this species attract visitors' eyes.

On the Pacific coast the northern limit of the distribution of this species is found in the cast off Chiloa-ken, and in the Japan Sea off Akita-ken.

Cliadly fond on the const of the shthwestern part of our cometry, in Kynshyu ame Chosen. More or less ammant in the Japan Ser. Not fome in the dear wamm water of the limushiwo. It is said that this species is often foumel at in spot where two cuments of water mert in violent commotion, and this species serms to have habits similur to speafishes.

Whether Scomber sinense Larebpide and Cybium chinense Curier we synonyms of this species is not quite certain, as their descriptions being fimmert on it Chinese pictme are very pror; but so fir as we know there is no other species in the oriental waters than the present one which has the lateral line bent beneath the first dorsul. Therefore the Climese picture on which these species were founder will probubly represent this species.

Cybium guttatum Cuv. \& Val.
Killipah.
Fig. 61.
? Scomber guthtus, Dhoch, Schneider, 23, Taf. 5, 1801.
C゚juium guttahum, Cuv. \& Val., Hist. Nat. Poiss. VIII, 173, 1831; Gỉnther, Cat. II, 371, 1860; Dity, Fish, India, :55, Il. LT, Fig. 1, Pl. LWI, Fig. 4; Cantor, Malay Fish., 111. 1849 ; Kishinouye, Sni. Gak. JIo, I, 379, 1916.
D. 16,19 or 20,8 or 9 . A. 21,8 . Gill-rakers $2+8$. Vert. $21+30$.

Budy dongater, laterally compressed, and nearly maked outside of the corselet. Candal purtion long and broud. Sceond dorsal, amal, and the candal well developerl, but the pectorals are small. Teeth in juws sharp, about 17, minnte teeth on the vomer, palatines, and the tongue. Lateral line is newly straight with a slight bend, it little lefuee the candal keel. Numerons short bramehes are fonul in the anterior half. They we oblique, closely set, and are longer towards the nape, diverging lackward. The scales on the lateral line are about 170.

The right lobe of the liver is large, while the middle lobe is slort and narrow. Intestine is slender with it loop at the middle. The imer wall of the stomach has about twenty longitudiual folds, half the mumber of which are smaller and altemate with the larger. Pylons desceudiug, stump at the distal end, and communicates with the duodeum by in very narrow opeuing. The duodenum is neally as long as the pylorns, wide at the fore end, with one anterior pyloric canal and another large pasterior canal. Air-bladder wanting.

Body silvery greyish with several rows of dark spots on the side. Tro dorsals, dorsal fiulets, and the caudal are black. Anal and anal finlets are colomless.

Specimens examined measure about 60 cm .
Widely distributed in the Indo-Pacifie region and also in Aristralian waters. Rather abondant in Taiwan.

Cybium koreanum Fishinonye. Hirasawara. Fig. 35.

Cybium koreanum, Kishinouye, Sui. Gak. Ho, I, 11, Pl. 1, Fig. 6. 1915.
D. $14,19-21,9$ A. $18-21,7$. Cill-rakers $3+10$. Vert. $20+26$.

Body rery deep, deeper than the length of the head, and broadest at the line comnecting the origin of the sccond dorsal and that of the anal. Snont short. Small scales are found in the corselet, laterial line, and round the base of the fins. They are, however, chiefly concealed under the skin, so that the lody seems to be entirely naked. Teeth in jaws sharp, elongated, 16-19 in the upper, and 13-15 in the lower jaw. Tillons teeth on the vomer, palatines, aud the tongue. Two gill-rakers are fonud on the secoud branchial arel. The lateral line rms nearly parallel to the dorsal outline of the body, with slight undulations. Many branches on both sides of the anterior half of the lateral line are quite similar to those found in C. gntutum. The ventrals are rery small, but the other fins are well developed, especially the second dorsal, anal, and caudal. Intestine rery long, lent more than four times. Short blind process at the end of the slender prlorus. Air-lowdder wanting. Abdominal cavity ver? low, compared with that of other seerfishes. The inuer wall of the stomach has about 15 lougitudinal folds. Four proric tuhes from the duodenm, of which the second is the longest.

Occipital crest very high. sradually asceuding hehind. Hyoid bones, clavicle, and hypocorscoid very broad. One anxiliary intermusenlar bone in the oceipital region. In sonse eandal rertebuac we find a lateral median groove ou each side, so that their cross-section is more or less octo-radiate.

The whole budy shines brilliantly with in metallic lustre. The back is greyish bluc, and the belly silvery. There are three or more longitudinal rows
of small greyish spots alung the lateribl malian line. Fins hackish, ventrals and anal finlets excopted.

Tt is remarkable that this fish spaws at the month of Daidoke, near Chimamp' in Tuly, and the immatme fish is caught in st wer uone the part. in Angust and September. Grows to a length of more than one and a hulf metres, and about fiftern kg in weight. Datmes when the fish is about 2.25 kg in weight and 75 cm in length. It Chimnanpo the water is tarbid, of ab brownish colmr, and in wam seasons its density at $15^{\circ} \mathrm{C}$ is $1.0126-1.0164$ near the surface, and $1.0166-1.0182$ near the bottom.

So far as we know the distribntion of this species is limited to the west :und south consts of Cliosen.

Canght in summer and nutumn with drift nets or in pound-nets. The fishery of this fish in Dikidoku was begun by Japanese fishermen since 1917.

It feeds on sardines, anchories and shrimps.
Tery nice food fish; but becomes inferior in the spawning seasm.

Cybium niphoninm Schlegel.

Sawara, sagoslii.

Figs. 6, 9, 32, 41.
?CHhere niphonium, Cnv. \& Vnl., Fist. Nat. Poiss., V III, 180, 1831.
('y'sum niphonimm, Nehlegel, Fnunn Jnpon. Poiss., 101, Tab. 53, Fig. 2; ľishinouye, Sui. (iak. 1lo, 1, 10, Pl. 1, Fig. 4, 1915.
Scom'eromer'us niphonius, Taqaka, Fish Japan, I-K, 15t, Pls. 42, 4, 1212.
D. $19,15,9$. A. $15-1 \bar{i}$, S. Gill-rakers $3+9-10$. Vert. $22+28$.

Body slender, elongated, and compressed, cosered with such minute scales that they are not stripped before couking. Corselet indistinct. First dorsal rery long, and its dorsal ontline is of very slight slope. Pectoral concave at the inforior posterior margiu. Lateral line molulating, and las a marked cure below the second dorsal. Nany small brach-canals are found on both sides of the lateral line, but they arr nut so distinct as in C. yuttatum and C. Forecnum. Teeth in jaws limeeolate, cmrod, and trenchant, about 25 in the upper and about 20 in the lower jaw. They are a little smaller than those of other species. Villous teeth on the vomer and palatines, but none on the tongue. Ouly one gill-raker on the second gill-arch.

The right lobe of the liver is louger than the others. The imner wall of the stomach is provided with about 12 longitudinal folds. Intestine slender, straight, without any loop. No blind sac to the pylorus. Duodenum saccular, more or less flattened, and wide. There are alont six pyloric tabes. The tube opening just behind the pylorus is longest. No air-Jladder.

The whole body shines with a metallic lustre. The back is light greyish blne, washed with green, and the belly silvery. Th a living fish we observe a purplish shade. Soren or more longitndinal rows of greyish spots are fomul on each side of the body. Some anterior spots in the median row are often comected together. The male fish is said t, le carker in colom than the female. Pectorals, two dorsals, and the caudal are lolackish. Ventrals and the anal are nearly colourless. Tmmature fish of abhat 7 cm lacks markings. They are broader, compressed and have a louger head than the adult.

Grows to a length of about 1 m . and 4.5 kg in weight. A fish under one half metre long, and abont one kg in weight is generally immature, and is called "sagoshi." A fish moder about two kg in weight is called " kozawara " by fish-mongers.

This species is a good and valnable food-fish, canght all the year ronnd, and especially abmodant in spring, when the fish spawns. Spawning season is from April to May. The ripe ovum is very large, about 1.5 mm in dimmeter. The larval fish is remarkable in having a large head with well developed strong teeth in juws. Immature fish of abont 3 cm are fommd in April and May. They grow to $10-20 \mathrm{~cm}$ in winter. Those immatme fish are fonud in shallow waters and are canght in drag seines for sardine.

Orarian ova do not mature at the same time; but here and there some ova become large and transparent, and assemble to the central carity to be discharged.

Thongh wanting in the air-bladder this species las a rather wide range of rertical distribution, swimming near the surface of water in warm seasons, and desconding to the doeper layer of waters in cold seasons. Geographically this species is widely and abundantly distributed in constal waters ($10-20^{\circ} \mathrm{C}, 1.022-1.024$ in density) of our empire;-Hondo, Shikokn, Kyushyu, and Chosen, and also in waters of northern China. Most abomdant in the middle part of the empire, especially on the coast of the Inland Serb,
lont becoming more searen in the nortbern and southem parts. A few straggloms are sometimes fomed on the coast of Hokkado. This specias euters the Inland Sea and lays in the spawning season. It becomes wry lean after spawniug; but recorers its fattiness alreatly in antumn. In summer and antmon the fish is often fomm near the smface, it leaps ont of the water, hat in the cold months it lives mear the bottan. At the flood-tide the fish is more active and is said to pusne small fish viohently, otten tearing drift nets with foree. 'Tlus fislermen of some villages of Niugaselki-ken ares said to use the drift net for this fish at the time of the ebb-tide ouly.

A fishery expert in Kigawatken estimated the number of ovia spawned from :ha adnlt fish in a scison to le $550,000-870,000$.

In the wigration to the Inland Sea the male fish is more numerous at the legiming of the season; but the female fish predominates near the cluse of the scasun. At this tine the female fish may easily be distinguished from the mate by the thick and swollen abdomen.

Cianght with troll- or hand-lines, set-nets, drift mets, seincs, punud-uets etc. Long lincs are seldom nscd, as the fish are not easily induced ly dead or inactive baits. When emponded in pround nets at night the fish seem to try to escape through the meshes at the bottam.

In the Inland Sea trollers expect good catches within the two hous before and after the ebb-tide, cspecially at dawn. In this sia the fish feeds principalJy on the sandeeel.

A jaw bone of this fish was found in a shell-mound in Chiba-ken, which proves that the prehistoric people in our islands :also canght this fish. However the fishery of this fish seems to have developed rery slowly. The name is not mentioned in rery old literature, such as the "Yengishiki" and the "Minyoshyu ", though many other common kinds of fish are enumeratel.

Late in November, 1902, a fisherman of Niihama, Yehime-ken, caught about fifty adult sawara with drift-nets. This untimely catch cansed much astonishment. Generally adult sawara leare the Inland Sea soon after sparning, latest at the end of Tunc.

From a recent inquiry of the Experimental Fishery Station of Kagawaken, it lecame clear that this species comes to the Tuland Ser again in autumn, though not so abundant as in spring. However, it is thought
that the fishery in autumn in the Iuland Sea will be remmacrable to open－ boat drifters．

Genus Sarda Curier．

```
Sarla. Cuvier, 1829; Jordan & Evermamu, 1895.
Pclamys, Cuv. & Val., 1831; Günther, 1860.
```

Body elongate，but rather short and compressed in young specimens． Seales minute，and a small corselet more or less distinct．The eaudal keel is thick aud naked．Teeth in both jaws are large，compressed，and strongly enved inward，but not trenchant．Near the anterior end of the lower jaw，the row of teeth is bent iuwards and approaches the symphysis．Vomer is toothless， lut a single row of rather strong and emred teeth on the palatives．Tongue also toothless．Many dark，lougitudinal，more or less ablique stripes are found in the dorsal part of the body．Vertebrie of the candal peduncle have lateral keels．Yoracions fish of rather small size in subtropical and tropieal waters of both Pacific and Atlantic Ocean．Pelacic．

Sarda orientalis（Sehlegel）．

Hagatsuwo，holzan，kitsunegatsnwo，sabagatsuwo，shimagatsuwo， sujigatsuwo，tollzav，ete．

Figs．11，17，33， 42.
T＇elumys orientalis，Schlegel，Fauna Japon．Poiss．，9），Tab，52，1850；Grïnther，Cat．Brit． Mus．II．368， 1860.
Shadh chilensis var．orientulis，Stendachner \＆Dülerleiu．Deitr．z．Kennt．t．Fisch．Japan．， 11I，11， 1883.
Sarde orientalis，Kishinouye．Sui．Gak．IIo，I，12，Il．1，Fig．7， 1915.
D． $19,15,7-$ S．A． $15,5-6$ ．Gill－rakers $4+9$ ．Vert． $25+20$ ．
Bodly elongated fusiform in adult specimens，but rather short and com－ pressel in young specimens．Month wide，maxillary reaching beyont the orbit，with large emred and compressed teeth．Teeth in jaws are wore or less mequal in size．About 16 in the upper，and $10-13$ in the lower jaw． Groove in the skin from the comer of the month is present，is in the tumuies． Posterior nostril is a mere slit．Sales minute．Lateral line undrlating slightly，aud las a peenliar，wave－like lwad over the pectoral fin．

Stomach long，with more than tweuty lougitudinal folds．Intestino
nearly straight, boundary of the rectum indistinct. Pylorus descending with a few 1 ngitudinal fulds inside, aud rather narrow.

Liver consists of three slender lobes, of which the two lateral lobes are very lung and nearly equal in length, while the middle one is short.

Myotomes are strongly folded, so that in the cross-section of the lateral muscle we count nearly as many rings as in the same of tumnes. The median wedge-shaperl portion of the lateral monscle is reddish, and the red portion becomes thicker towards the tail. On the surface of the last myotome we canuut find a tendon.

Skeleton porous and rather weak, and much resembling to the type of the Cybiidac. The rertebrae of the eaudal peduncle are provided with lateral keels, each of which is divided into two, anterior and posterior portions. Two auxiliary intermuscular bones are found on the exoccipital,-one on the dorsal wall of the foramen magum, the other a little forward. At the dorsal part of the claviele the anterion pointed process is ridely sepuraterl from the posterior latuellar part.

Grows to a length of ahout 80 cm and to a weight of $1.5-3.0 \mathrm{~kg}$.
Flesh is rathe 1 soft, and inferion in quality. Generally this species is not specially sught alter, except in Kyushyn, lut is caught as an adjuuct in fisheries of the mackerel, bonitos, sends, etc. It is said that in Kyushyn it fer pround-nets are specially built for the capture of this speries.

This species lives rather near the surface of the coastal waters, aud sometimes makes large shouls. It bites eagerly on a hait, watural or artificial, bence it is easily cturght with trolling lines.

Found in the southern parts of our waters, both on the Pacifie as well as on the Japau Sea cuast, especially abundant in Kyushyn. Many yeurs ago, an inmature eximple was culught in a drag-seine on the Pacific const of Aomori-ken. The Hatwaiian species of Surda seems to he the same as the Japruese species, but the Califurnian seems to beloug to the Chilian species.

Many anthors have confonded this species with an allied species from the Pacific corst of Soutio Americas; but the difference between them is quite evident. As Sombegel rightly remarked, the pectorals are smaller in Surdu orientulis, and not ouly these fius but the other fins are also smaller. Moreorer: the number of gill-rikers is $9+17$ in Surda chitensis, and the number of
rertubre is $22+22$. The dark stripes in the back are fewer, and more oblique in S. chilensis, and much wider apart than in S. orientulis.

Genus Gymnosarda Gill.

Gymnosarka. Gill, 1862.
Body long, fusiform with a large head. Month large, but the maxillary does not reach beyond the orbit. Eyes large. Scales in the corselet elongated, and concealed under the skin. Ontside of the corselet and the base of the fins the skin is entirely naked. Lateral line undulating. Teeth in jaws large, curved, and nearly conical. Villous teeth on the tongne and palatines, but the vomer is toothless. Caudal partion very slender with a well developed kerl on each side.

First vertelna is very short. Cross-section of caudal rertebrae is more or less cruciate, but the lower end of the perpendicular limb is always bipartite. Anterior precandal rertebrae with three ventral grooves. In external appearance fishes of this genus are closely related to tunnies.

Pelagic fish of voracious habit, and of somewhat large size in the littoral waters of the tropical region, chiefly Indo-Pacific; but a species is recorded from Europen waters,- the Meditermean and the North Sea. In spite of great differences in external characters, as well as in the interual anatomy, many anthors coufomaded this genus with the genera Katsuoonus and Euthynmus of the Kitsmwonidae.

Gymnosarda nuda (Gïnther).

Isomaguro (Ogasawara Is.), tokakin (Rytikyu Is.).

Pelumys nulu, Gïnther, Cat. Brit. Mus. H, 368, 18.30 ; Kiunzinger, Fisch. d. Woth. Meer., 110. 188.
(iymnostritb nulu, Kïshinonye, Sui. Gak. JIo, I, 13, 11. 1, Fig, 8, 1915.
D. $14,13,7$. A. 12, 6. Gill-rakers $2+10$. Vert. $19+19$.

Body fusiform, entirely naked outside of the swall corselet. Head comparatively large and the caudal peduncle very slender. As the scales of the corselet are concealed under the skin, small wrinkles are found around the pectorals, and several longitudinal furrows on both sides of the dorsals. Lower juw broad. Teeth in the upper jaw are 18-23, and in the lower jaw $10-16$.

Lateral line runs parallel to the dorsal ontline of tho borly, nearly to tho twelftly spine of the first dorsal. Below the spine the line is bent downward. Behin! the vertieal from the first dorsal finlet, in few undulations in the line. Scales of the lateral line are alsu concealed under the skin, and on both sides of the pred scales we find two or three rows of minute scales. The lateral keel of the eandal prortion is also covered with minute, elongaterl seales. The third spine of the first dorsal is longest and thickest, though Rüpres reports that in his specimens the secoud spine is the longest. Airbladder lage and thiek-walled, thongh Rüpres denies its presence. Pyloric cocea form a couspicuons mass in the ahdominal cavity as in other forms of the Cybiide, so that it is strange that they escaperl the ejes of Rüpper, but the fact that the mass of the coeca is enormously developed deceived the naturalist, probably the mass was taken as a purt of the liver or other organs, as Kidunzinger (49) remarked in his work.

Skeleton frim aud stroug. The number of vertebrae is very small, compared to that of the species of Cybium. Skull tlat and broad. Anterior half of the frontals is provided with many oblique ridges, and covered directly with the skin. Posterior margin of the preopercle is a little modulating. Dorsal anterior margin of the operele is slightly concave. Inner limb of the suboporcle is large. First vertebra is very thin and its neural process is free from the centrum. Anterior preaudal vertebra want the parapophyses, and the lateral keel of the caudal peluncle is narrower than the diameter of the centrum. The last hacmal process is coalesced to the fau-shaped hypural bone. Cross-section of rertebrae is not exactly cruciate in most of them, but more or less sex-radiate. Haemal arch is formed from the eleventh rertebrin, and haemal spines of some length are found in precandal rertebrare. Intermusenlar bones are very nume:ous, beiug found to the 29 th vertebra.

Colour is said to be dark bluish to violaceons at the back, and greyish white at the belly. Top of the head and the anterior end of the lower jalw are greyish. Fins are black or greyish, learing the tip of the second dorsal and anal colourless.

It is told that the fish attains the big size of about 240 cm with a weight of 80 kg ; but fishes now commonly caught at the Ogasawara Islands are 100150 cm in length, aud $20-30 \mathrm{~kg}$ in weight.

Known from the tropical regions of Iudu-Pacific waters. Caught with hiupoous, hand-lives, and trolling limes at the Ogasawara aud Ryukyu Islands

Voracious fish, resorting to the rocky bottom of coastal waters in small schools of tens or scores, devouring Casio, Decapterus, etc. Not found in offshore waters. Caught at grounds about 20-200 mont, with hooks dressed with live baits. Bites hooks readily in the twilight. When there is no tidal ament the isl is easier caught. A better catels is expected in the spawning season, May aud June, though it is caught all the year round. Some condemn the flesh of this fish as soft and unsavory, but others commend it its delicions. This difference of opinion is perhaps due to the difference of season in which the fish was tasted. Kluzzinger (49) sars "selden einzoln, in hohen Mecren, weiss fief, kommt selten herauf. Frisst ald Lockspeise Clupeiden nad kleine Sphyränen. Fleisch geschätzt."

Fig. I. A caudal vertebra from a shell-mound of Ogido, $7 / 9$ nat. size. From left, dorsal. lateral and ventral views.

Recently Mr. Amirs Matscmipa of the Anthropological In-titute: of om University sent me for identification a large vertebra obtained from a shellwound in Ryukyu. The vertebra is closely allied to the :Sst rectelura of the present species, but not exactly, differing in the shape of the lateral keels, and the neman and haemal grooves.

Order PLECOSTEI hishinouye.

1 lucostri, Lïithinouye. 191%.
Thnnnidac. Kishinonye, 1915.
Thmminae. Stark, 1910.
Group of teleostonatous fish, laving a cutaneous vascular system, conmeter with the vascular plexus developed as sheets in the lateral muscle.

Portions of the lateral mascle sumbunded bey these sheets of the vasmlar plexus are situaterl on luth sides of the vertehral columm, aut aro dark reet, neary blak in colonr: Another peculiar vascular plexus is wroboper on the iuncr side of the liver of in the hamal cabst. Thorever the cirmation of bood in the liver is especially well developed.

Thus this group of fish is distinetly defined from the other fomes of the Toleostomi, and emprises the most highly specialized fomen of fislus. Thwe is no doubt that they arr descendants from tho Acanthophrgii, among which they should lave hern chassifed. They are most closely allind t, tha genem Sard" and Gymmestioler of the Cybiidae.

The bordy is well adapted for swift lexomotion, being phump, jeinted at Foth ends, aud suowth at the surface. Ciundal pedunele very slender, bat with hand lateral keels. Heal triangular, nearly flat at the top: Suont shanter amel the mouth smatler than in the Cybiidac, the upper jaw scarcely reaching: the rortical from the middle of the eve. The pasterion part of the external margin of the npper jaw is mot staight, bant bont downward, due to the overlapping of the maxillary orer the premaxillary. Posterior end of the upper jaw is straght. due to the form of the supplementary bone. The auterior uostril is a were point, and the posterior nostril a transverse slit. Scales large nud thick in the corselet, and those behind the eyes are thick aud elongated. Scales are ctenoid at the margin but smonth at the surface. Operculiur region is entirely naked. Corselet is corered witll a thick membane of strong connective tissne, to protect the thick part of the peenliar cutaneous riascular system.

Fins are well developed with thick spines and strong fur-iays. In the fust donsal the furst spine is not iuferior in size and thickness to ans succeeding spices, and the posterior side of the dorsal outline of the fin is concare. The candal fin is firm and rery widely forked, more or less lunate in shape.

Gill-rakers are long and fine, and are developed on both sides of hanchial arches. Abdominal carity is namow and depressed, as the reutral pocesses of the precaudal reitebrae are well developed, consequently the lypaxial purtion of the lateral muscle in the precandal portion is rexy thick (Figs. 18, 19). Portions of the lateral muscle on both sides of the rertebral colnmn are coloured dark red or blackish. These portions are called "chiai" in Japanese, aud each dark red portion is thick at the auterior end, tipering gradually
towards the posterior end. The chiai portion is soft and poor in taste, and contains about seven to fifteen times as muel blood as the other portion, estimating from the colour.

Pyloris short, descending, runs along the inferior side of the stomach. Duodenum receives at the posterior side five or six dendritic canals earrying the tufts of pyloric coeca, and in bonitos two short tubes on the auterior side as well. These deudritic tubey greatly vary in length. Each terminal branch of these tubes ends with a tuft of coecal ontgrowths of nearly equal size, and yellowish in colour. Each gronp of these tufts is covered with a membrane, and the whole mass of these tubes is covered with a thick membrane to form a compact mass. In these tubes we find a half digested mass of fuod, but in the yellow tufts we have not found it yet.

Myotomes at the surface of tha body are bent with acute angles at 5 points, so that we find more than ten concentric circles in the cross-section of the lateral muscle in each quadrant. There are three myotomes in the cephatic region, and generally we find an ansiliary intermusclar bone between the last two. Myotomes in the caudal peduncle seem to have been rednced in number. Moreover the terminal tendon of these myotomes are mell developed, and mar be distinctly seen at the onter surface of the muscle, when we remare the skin.

The rascular system is rery complieated and raviable in different members of the group. Besides the entaneous rascular system we find many peculiarities. It is remarkable that in the ancestral forms of tummies the posterior cardinal rein does not pour directly into Cuvier's duct. In these timnies the principal reins uniting with the Cuvierian ducts are two large cutaneous veins carrying blood from the dark red portion of the lateral muscle, and the anterior jugular reins. The posterior eardimal rein is insignificant and communicates with lateral commissures at the candal peduncle to the cutaneous reins mentioned above. In these forms hepatic portal veins form a massive plexus on the axial side of each lobe of the liver. In more adranced forms, however, the posterior cardinal rein is well developed and mited with the right Cuvierinn duct. In these forms the rembes flowing downwards from the dark red portions eollect to the comparatively spacions haemal canal, and there they are divider into many short parallel transverse eamals, which fill up the canal entirely, forming is solid mass in it. In still more morified
benitos, the cutaneons veins do not unite directly with the Cuviorian duct, but form hepatic protal reins. In bonitos the vascular plexus is alsa fond in the hatemal canal. Blood vessels in the air-bladder belong to the visceral vaseulior system.

In primitive tumies the kidnoys are more or less ring-shaped, just behind the head, and around the phargngeal muscles. In the other tummes the kidncys are prodnced more or less behind, and in bouitos they are elongated nearly to the end of the abdominal cavity. Posterior portions of the kidneys lie chiefly on the roof of the alrlominal cavity but, in the hammal canal too we find a continnous or sometimes small discontimons masses of a kidney-like brownish substance with minute black spots.

Skoleton from, solid, and comparatively light. Skull firmly consolidated. The dorsal surface of the skull is entirely covered with the lateral muscle and there we find paired non-ossified portions, excopt in the genus Auxis. On the rentral side of the skull we find many deep grooves for the inscrtion of opercular muscles. The posterior end of the parasphenoid is more or less tubular. Subcranial cavity is very high. Lower piece of the postclavicle is not flat, the broad proximal part making nearly ab right angle with the namow distal part, and these two parts are in two different planes. The distal part is rery short in many cases. Clavicular ligament is inserted in the first rertebra not to the skull.

Vertebrae are compact and rich in grooses and ridges, so that they are light and furm. The total number of vertebrae is always 39, except in the genus Katsuvonus which has 41. They differ from each other in form, processes, ete, in different parts of the vertebrial column. Nemal and haemal processes are more or less laterally compressed. The first neural process is remarkably feeble.

Fishes of this order seem to have their own temperature, more or less higher than the temperature of the water in which they live. They are voracious, pelagic fish, swimming very fast, and feeding on small fish, calamaries, and medium sized planktou. Found in temperate and tropical seas. They spawn in off-shore grounds and grow there. They are very energetic and powerfin, therefore specially long and strong implements are required for catelling them.

Ley to the families of the order Plecoster.
Tonly wholly covered with senles, second dorsal and anal high, vertebrae $18+21$.
transverse process present, 1st vertebra short, anchylosed to the skall, nlis-
phenoids meet at the rentrai median line, air-bladler generally preseat.....Thumnudup.
Body naked nutside of the corselet, second dorsal lower than the first. vertebrae generally $20+19$, some intermuscular bones are divided into two. distal and proximal, etrihaemal spine developed letween the centrum and the haemal arch in most vertcbrae. network of linemal processes well developed, air-bladder wanting. Fatsuronidae

Family THUNNIDAE Kishinouse.

Thunnidae, Kishinouye, 1918.
Body plump, wholly corered with scales, which differ in size and form in different parts of the body. Corselet well dereloped, but its boundary is not distinct. The lateral line has a pecoliar curre abore the pectorals. Teeth rather feeble. Single scries of small conical teeth in both jaws. Ther are sharp and cure inward. Villiform teeth on the vomer, palatines, and pterygoids. Many dentigerous calcareons plates are formd on the palate. The denticles on these plates are quite similar to those found on the romer, palatines and pterygoids. Thus the roaf of the month-carity is quite rough, contrary to the nearly smooth roof in the Katsuwonidae. Three lobes of the liver suberual. Tntestine rather long, with three folds. Pyloric tuhes dereloped only on the posterior convex side of the dhodenum. Pyloric coeca heteroclitic, inregular in size. Those found at the distal end heing longer and thicker than those at the proximal part. This heterochrony is more marked in primitive forms. Rectum short, it has nearly the same diameter as the preceding part of the intestine. Air-bladder present, except in Neothamnus rarus.

Catmeons blood-ressels above and helow the lateral median line are witer both at the anterior and posterior ends, and are comected. by short horizontal ressols with the chief blood-ressels in the hamal canal at the candal peduncle. The cutaneous reins are large and unite with the Cuvierian ducts directly or with the cardinal rein. Each of the paired cutameons arteries arises just belind the pharyngeal muscles or somewhat behind it, runs bickwards and downwards behind the root of either the third or fifth rib, and is divided into two nearly purallel bramehes, a little before it comes to the surface of the muscle, betreen two consentive internusenlar bones. The dark red portion of the lateral
mascle is rather narrow, anl meets the axial skeleton with a marow neck or rout in the hypuxish prortion only.

Ligament in a deep modian grouse betweon the anterior end of the frontals is attarien to the skin, anterior to the median fommen of the skntl. This ligament is a characteristic of this family.

The trinswers process of some procandal vertebrae is briad, well developed. The first verteha is greatly reduced in height and firmly anchylosed to the skull. Inferior formen is smatl, and is found in the eandul vertebne only. Number of vertebrae is constant, 39 in total, of which 18 are precandal, and 21 caudal. The haemal canal is closed in the tenth or eleventh vertebra, i. e. near the middle of the precandal region. Alisphenoids meet at the ventral mertian line. Anterior precandal vertelnae, are broader than ligh. Lioof of the month cavity is covered with mumerons plates covered with villons teeth.

Many systematists put too much weight on the length of the pectorals, lut it has little value in the classification.

Key to the genera of Thunnidiae.

Genus Thunnus Sonth.

Thunnus South, 1815.
Thynuns, Cuvier, 1817 ; Günther, 1860.
Orcynus, Cuvier, 1817.
Germo, Jorday, 1888.
Albacora, Jordan, 1889.
Boxy phmp, woust. The first hemal camal is closed in the tenth vertebra. Anterior hamal arches of the precaulat region are turned forward and namors. Right side of the stumach receives an artery from the downward branch of the coeliaco-mesenterie artery. Two large banches of the cocliaco-mesenteric artery send their bloon to the liver, and they are finely divided into plexus on the inner side of the liver. These plexus remite int, saveral arteries to
the stomach, spleen, and intestiue. The hepatic portal reins ranning along these arteries are also subdivided into plexus before entering the liver. The oesophageal intery is not well dereloped, and the coeliac arteries are kranched from hepatic arteries. Cutaneous arteries branch from the dorsal aorta below the fifth vertebra and just lehind the plaryngeal muscles. Arterial and venons plesus on the axial side of the liver.

Round the spots of emergence of the hepatic reins the liver consists of only, a thin sheet of renules the substance of the liver not being found in these spots. Thas the liver is thickest midway between the root of the hepatic reins and the attemated margin of the liver. Vascular plexus on the axial side of the liver are also situated at the thin portions, and are surroumderl by thick masses of the liver. Roof of the abdominal cavity is conves, at the anterior part. External wall of the air-bladder is uniformly thin. Kidners ring-shaped.

Fey to the Japanese species of the genus Thunnus
Pectorals very long, reaching to the second dorsal finlet, markings in the belly,
when present, longitudinally anastomosing. ..
Pectorals not reaching to the vertical of the origiu of the secul dorsal,
markings in the belly transvense, and coustantly present........................ oripntaits.

Thunnus germo (Lacépède).

Tomboshibi, binchoh, linnaga, kantaro.
Figs. 20, 46, 52.
Scomber germo, Lacépède. Hist. Nat. Poiss. II. 598. III, 1, 1802.
Thynnus pucifiers, Cuv. \& Val. Hist Nat. Puiss. VIlI. 133, 1831; Giinther, Cat. Brit. Mus. II, 30f, 1860.
Germo germn, Jorian \& Seale, Bull. Bur. Fish. XXT, 175. 1995.
Thunnus alalunge? Kishinonye. Sui. Gak. Ho, I, 18, PI. 1, Fig. 10, 1915.
D. 14,14, S. A 14,8 . Gill-rakers $9 \nmid 18-19$. Sciles ca. 210.

Body rather slender, head and eyes comparatively large, caudal portiou shont. Scales rather large, about 210 in the lateral line. Pectorals sabre slaped, rery long, reaching to the first anal finlet. Lower margin of these fins is a little concave at the proximal part. Height of the second dorsal is equal to or a little shorter tha: that of the fist dorsal.

The roof of the abdominal cavity is remarkably conrex. So the carity is
very marrow and the flesh very rich in anome. Thare lobes of the liver are comected with eade other by wry marow pontions, and the lateral lobes are dividen into wany lohnles at the margin, as well as at the imer side. On the onter side of the liver we find rery fin parallel venules, corering nemply the whole sunface of the liver. On the imere side of the liver hulbous aud more or less conical masses of rascmar plexus of both atorioles and vemules are fomins.

Venules to tha cutancous vein are armaged in two alternate rows, and are more numerons than the atterioles. These reunles pour to the inner side of the rein. Arterioles from the contaneons artery are arranged in one row, and on the inner side of the artary (fig. 20). Venules are very minute aud mmerons, forming thick sheets in the lateral mascle, before porring into the cutaneons rein. Theso venules form mumerons suall bundles by miting just at the root. Each of the wmerons brouches from the entaneons artery is minutely, divided as soon as it emerges from the main blowd-vessels, and muming along the renules supplies fresh blood to the dark red portion of the lateral muscle. The cutaneous antery originates just behind the phargigent wuscle in the levels of the fifth reatebra and mas ohliquely backward.

Air-bladder present, rounded at the auterior end, and its wall is mather thin. It is narrow, but long, amwing the whole length of the abolominal cavity. Kidneys of both sides are united to form a flat, ring-shaped body round the pharyugeal nuseles. The ring-shaped kidneys are slightly prolouged backward. Ureters of both sides meet in in nearly straight line, thick at the junction. In this thick junction, we find a short longitudinal septum from the anterior wall. Pusterior to this septum the weters are joined to a median tube.

Sknull rather narow. Vertebral column more or less slender. Height of the rertehrae nearly unform. Parapoplyses well developed. Parapophyses of the nintll vertehra are abmost horizontal as in the preceding vertebrae; but in the tentll rertebra the hamal areh is formed and is turned forward learing ouls : fo little space leetween the centrum and the arch. In each of the following precaudal vertetnae the lamal spine is formed, and it is remarkable that it is nearly uniformy elougated. These precandal haemal spines are remarkably longer than in other tumies. The head of the second and third ribs is very
thich, and the distal protion of these ribs is hroal, thin, aud gradually namow. The part between the head and the broad distal portion is rery namow to admit the passage of the cutaneonus blood-ressels.

The colow is blackish bluo in the dorsal part, with a greenish linstre near the tail. Sides and belly are silvery. In young specimens, ca 60 cm in length, we find some five or six dark, irregularly longitudinal bands, running near the rentral median line. Thesa bands are more distinct at the candal region, and are more or less united in the form of integular net-work. First dorsal nearly colowless, except the dusky loorder. Pectorals black, rentrals and the second dorsal are dusky; but the anal is neart colourless. The dorsal finlets are dnsky, washed with yellow, while the rentral finlets are more or less dusky. Iris silvery, tinted with light blue.

This species is rather small, a germon of ca 25 kg is rather rare and large. In southern California S kg fishes are said to be common, a fish weighing 20 kg is considered large. In Japanese and Hawaiian waters, fishes of ca 45 kg are said to be nearly maximum and rare.

Very widely distributed in both the north and south Pacific. Canght in large quantities on the Pacific east of Mondo, but not yet fomd in the Japan Sear. Fonnd in off-shore grounds only, never approaching the coast. This species is canght in our waters till about $43^{\circ} \mathrm{N}$, off the south coast of HokkaidoIn spring the germon begins to migrate northward. In this northerly migra. tion the germon precedes the striped bonito, but fullows onr common tunny (Thumns orientalis). In winter the germon is found in the southery part of our waters, abont $34^{\circ} \mathrm{N}$. Foumd in water of $10-25^{\circ} \mathrm{C}$ in temperature, and at it depth of about 80 m .

Germon or the albacore seems to have been canght in onr waters since the bergming of the mineteenth century, as its name is first fonnd in the literature of a very early priod of that century. In former days the germon was canght mintentionally, while engaged in fishing for the common tumy or wher kinds of fish, and was not ralued, as its flesh is soft, lut recently a special long-line has been used for its capture. Canght chiefly by means of longr lines and drift-nets.

Flesh pinkish in columr, soft, and not gool for "sashimi ", hence not much estemed in our country; lut the amonnt of flesh is comparatively large. The
canned flesh is much esternued as "tuma" in tho United States of Anerici.
Germon feeds on pelagic plankton, crustaceans, and small fish. I foum a young germon abont 30 cm in leugth in the stomach of a large germon, caught on January 20th, 1917 near the Ogasawara Lslands, and other small ones from a yellow finued tumy and a spear-fish, caught on February 27 th of the same year. Such small individuals are not caught nor found near the cotst of the main island.

I camot tell at present whether the germon of the Atlantic and the Mediteranean is tho same as tho Pacific germon. Specimens of the germon and the common tumny of the Mediternanean were sent to mo from the Yoological Station at Naples in 1914 on a German stoamer; but uufortunately the steamer was seized in the lied Soin and these specimens did not reach me. Mauy authors seem to have coufounded this species with other species of tumies with long pectorals.

Thunnus orientalis (Scllegel).

Kurushilhi, gotohshibi, maguro, medi (immature).
Figs. 3, 21, 43, 44, 50.
Thynnus orientalis, Schlegel, Fauna Japon. 1'oiss. 94, 1802.
Orymus schlegelii, Steindachner d Düderlein. Fisch. Japon. III, 11, Taf. 3. Fig. 1. 1885.
Orcynus thynnus, Kitahara. Joura. Fish. Lur. VI, 1, Pl. 1 Fig. 1, 1897.
Thunnus schlegeli, Fujita, Otaki \& Higurashi, Fish. Japan, I, 21, P1. 1905.
Thumnus orientulis, Fishinouye, Sui. Gak. Ho, 1, 17, 11. 1, Fig. 9, 1915.
D. $13-15,14,8-9$. A. $13-15,7-8$. Gill-rakers $12-13+24-26$. Scales 230.

Body plump, broad, and the caudal portion sharply tapering. Pectornls short, scarcely reaching the origin of the second dorsal, and tapering graditally towards the posterior end. The height of the second dorsal is louger than that of the first, nearly equal to that of the anal; but shorter than that of the pectorals. The lateral line has a sharp and peculiar bend over the pectorals, being lent suddenly uprrard and auteriorly above the origin of the fius, and theu bent gradually downwards and backward again. Schlegel wzites that the eyes of this species seem to be larger than those of the common European tunny. In one year old fish, the eves are larger, being contained ca 6 times i_{n} the leugth of the head, but in a fish of ca 2 metres they are contained more than 8 times.

The liver is nearly the same as that of the preceding species; but the margin is not much dirided. Fine remules of the hepatic vein at the external surface, and big masses of rascular plexus at the internal surface are found.

An-hladder is trimugtlar, pointed at the posterion end. It is nearly straight, thick, and rery wide at the anterior end, occupying the entire breadth of the abdominal carity. Air-bladder of this species is however short, oceupring a little more than half the length of the abdominal carity. The external wall is uniformly thin. The inner wall is finely reticulated. At the middle of the roof of the air-bladder, there is a large round hole, which leads to an accessory comical sac, extending from the hole behind to the posterior end of the principal sac. At the anterior end of this upper accessory sac it rein is found to pour to from a segmentary vein. In immature tummes the air-bladder is short, rery narrow, and almost collapsed. The median part of the air-bladder is raulted, and at the anterior end the carity has two slight swellings.

Kidneys are short, and are restricted to the anterior part of the abdominal carity. In immature forms they are ring-shaped, round the plarrngeal muscles, aud terminate with a slender, short process just before the first haemal process. In adnlt forms, however, the posterior portion is not well developed. Ureters meet at the posterior end of the kidneys, or a little out of it. Near the level of the 7 th or Sth vertebra, ureters approach each other towards the median line, auld mite into a common canal.

Vemules to the cutaneous sein are arranged in two rows, and those of the external side pass over the cutaneous artery; while those of the interior side rum below the artery. These venules are formed from the union of many fine canals, forming the plexus round the dark red portion of the lateral muscle. Arterioles from the cutaneons artery are arranged in one row. Oesophageal artery is fomed but rery short.

Sknll broad, with convex lateral sides, and the broad and high parasphenoid. Basisphenoid thick. Alisphenoid extends downward at the median line. The anterior margin of the subopercle is more or less coucave. This is quite characteristic of this species.

The back is nearly black, especially at the anterior part of the body, but the colour gradually elamges to greyish blne with metallic reflections in the posterior part. Belly greyish with many colontess transrerse lines and
rows of colomless dots in alternation. 'These lines and sewies of ilots aro twenty or more in mminer, imb they are nearly vertical in youmer specimens, ruming throngh from the hack to the belly ; but they bem graulually hak ward twands the ventral median line as the fish enows. At first only colomess lines make their appearance, and afterwards series of dots mo interenhated leetween them. Moreover the lines are als' divided into dots afterwards at fho lelly, tud they disappens gradually from the back. The dots are irregular in antangement in the candal region. First dorsal greyish, second dowsal geyish with yellow tip, dorsal finlets yellow, tud the anal and anal finlets silvery. Pectorals nearly lhack, ventrals greyish. Tris grolden yollow.

Flesh is dark reddish, compuratively firm, and not very oily. It is superior in quality, especially in culder months, and is much estomed. Two Year old fish are ealled "medi," and are uncle ralued by epiemrians. It is told that in anl after the spambing season the flesh is often mottlorl with darker spots and is much inferioi in quality. Suclı flesh is distinguished by the name of "aznkimi", meaning red bean flesh.

This species attains a grigutic size. Mr. Hideo Suzuki told me that two large tmumes, eisch weighing abont 375 kg were cunght in a pound-net near Odawara in 1913. These were exceptionally large. Tunnies weighing more than 150 kg are consideral pretty lurge in general.

This is the most common species of on tunnies, widely and almodantly distriluted in omr waters. It is easily distinguished from other tumnies by its small eyes, short pectorals, sharply hont laterab line, triangular nir-bladder, fiuely striated liver, white markings in the belly, yollowish finlets withont black margin, etc.

In winter this species is found in the sutheru part of our coast, as fill south as $32^{\circ} \mathrm{N}$. Not found near the Ryokyun Islauds, Taiwan, nor Ogasawara Islands. In summer this tunny mignates northward as fur as about $46^{\circ} \mathrm{N}$. In winter the tumy fishing is actively pursued on the Pacifie coasts of south and middle Japan, by means of long lines on or round deop, off-shore banks, and on the northeastern coast of Hondo by means of drift nets. In summer this tumy is cancht on the Pacific coast as well as on the Japan Sea coasts of morth Japan by means of pound-nets. Only a few exmples' are canglit on the east const of Chosen. Found in waters of $5-20^{\circ} \mathrm{C}$, and
most abuadant in waters of $10-15^{\circ} \mathrm{C}$. Thus the optimmun temperature for this species is lower than that of the other townies in our waters, as well as that of the common Atlantic tunny.

When albacores or spear-fishes begin to be caught, this tumbr's season is nearly orer. It feeds on different kiuds of fish, more or less pelagic in habit, such as sardine, anchort, flyivg fish, scarl, sand-cel, etc.; lut sometimes fishes living near the bottom are found in the stomach. Calamaries and pteropots; Pyrosoma; pelagic crustaceans, such as Euphausia, Sergestes, Acconthephyro, larvae of Brachyura and Stomatopoda, anomalous Amphipodit, etc. are also found in the stomach.

This species is closely allied to the hhe-finned tuna or leaping toma of the Califorvian const, but differs from it in the colour of fins, and in the mode of ramification of canals of the cutaneons blood-ressels. A similar or the same species is said to inhalhit the Hawaiian waters; but I have not ret had a chance to investigate this.

Tonnies are migratory, but they resort and seem to stay for a while at the top of deep banks, often 200 ml deep. In the ricinity of such banks timunies seem to find plenty of fool. The presence of tumnies in deep water is ofteu detected by fishermen from the behavior of sea-gnlls, flyivg fast in a much dispersed wide circle, or from circular or ohlong wareless spots, ca. 1 in in dimmeter, produced for a time at the surface of the sea. These spots are colled "nagi", meaning calm, wareless, and are believed by fishermen to come from the oil of fish deroured ly tunnies; lout as tumnies mostly eugulf their prey in toto, and moreorer as I did not olserve any glittering iridescence in these spots, the explanation is not satisfuctory.

Thunies are deroured by killer-whales which are said to catch them at the nape and kill them immediately, so that they fear killers so greatly that they are frightened away several miles from the spot where these ferocions enemies are fonnd. Thus catches made by pound-ncts vary greatly according to the farourable or unfarourable proximity of killers. Sometimes tunuies leap on beathes recklessly to escape from these enemies.

In their uortherly migration tuunies swim quite near the const, and are caught in pound-nets, which are set in a depth of about tweuty metres.

Small fish of ibnont 25 cm , weighing en. 20 g in weight are canglit
with rakl aud line late in smmmer. Such immature fish are called "imoshini" in Miyazaki-ken. Still smaller fislı are called "kakinotane" in Kanactwaken, und "uhak)" or "hintsu" in Miye-ken. Thase immature fislies are finnd in association with Auxis, feeling chiefly on pelagic crustaceans. These immature fish grow to a length of ca. 40 cm , weighing car. 1 kg in winter, and in the next summer $2-3 \mathrm{~kg}$ in weight.

In summer, June and July, the reprodnctive glands are very large, and the fish swarn near the surface of the water, often showing their dorsisl fins ont of water. This is the case in the morthem parts of our waters, both on the Pacific aud Japan Sea coasts. These mature fishes are insociated with immatro fishes. I have, however, not jet exmmined a tumy with fully ripe reprodnctive elements, and in Angrst the reproductive glands are found spent. So that we are inclined to helieve that the tunuy spawn in oftshore waters. Ot the sonthern part of Kyushyn and also off the Piacific coast of the central part of Joudo, we find small jmmature tumnies in smmmer and antmon. In these waters the common tunny with ripe reprodnctive glauds is not known. But it is difficult to believe that thase immature fishes migrated from the morthern waters.

Tumnies are canght more on dark nights, aud before a storm. When the weather is warm with it southerly wind, tunuies come near the surface of the water, aud a grod eatch by drift-nets is expected. On a diey of northerly wind drifters do not go out fishing. They are said to swim against the coment, especially when they aro near the coast, heuce they enter bays or inlets in low tide and seek off-shore grounds in ligh tide. Tunnies dislike a water of a low density, so that they do not appromel the const on a rainy diay, nor approach the month of a river. They are found in a water of ca. 1.024-1.025 in deusity.

It is said that when a shoal of tumies is frightemed at something ahead of them, every tunuy of the shoul turns back immediately just at the spot where it happens to he. Thms the hindermost fish lead the school when retiring. In 1921 a few immature tunnies were caught off Seudai in set-nets, ats a deptly of ca. 300 m . The nets were for a kind of deep-seat slarks. These tunnies were probably eutangled, while the net was being hauled in, or when letting it ont in the sea.

This species seems to descend to ai deptli of abont forty metres below the surface of the water.

Geuns Parathunnus gen. nor:

Cutaneous blood-ressels are found from the myotome of the serenth rertebra backward. The posterior cardinal vein does not communicate with the Cuvierian duct directly. At the margin of the exterior surface of the liver a few short remules are fund. On the internal surface of the liver, comien masses of plexus of renules only are fonnd, arteries not leing divided in the masses. The right side of the stomach receires in artery from the right dorsal branch of the coeliaco-mesenteric artery.

Parathunnus mebachi (Kishonouse).
Mebnehi, daramashibi, hirashibi, mebuts.
Figs. 4, 2., 47, 49.
Orcynus sibi, Kitahara, Journ. Fish. Bur. VI, 1, Fl. 1, Fig. 2, 1897.
Thunnus mebachi Kishiuouye, Sui. Gak. ITo, I, 19, Pl. 1. Fig. 11, 1315.
D. $14-15,13,9$ A. 13,9 . Gill-rikers $S-10+18$. Scales ca. 190.

Body rery broad, the caudal portion short, and the head and eres large. The dorsal outline of the lody is much cursed; but the rentral outline is much more curved. Scales in the corselet very large. Length of the head mearly equal to the height of the body in fomber specimens, but it becomes a little shorter in old individuals. The anns is nearly in the middle between the suont and the end of the candal fin. Scales large ca. 190 in the lateral line, which lias a gentle, wavelike eleration above the pectorals. Pectorals we long, gradmally printiug towards the distal end. In large specimens they scurcely pass beyond the origin of the second dorsal, but in small spocimens ca. 1 m in leugth, ther reach the first dorsal finlet, and the rertical passing through the midolle of the anal. Second dorsal and anal are only it little higher than the first dorsal, and they are comparatively marow and falciform. The caudal fin is widely expanded, wider than the height of the body: Pusterior portion of the first dorsal has the convex outline generally.

Air-lbadder well develuped. It is divided into two heads at the anterior end, which lio on both sides of the dorsal anta and letween the pharngeal
muscles and entaneous arteries. Kidneys are prolonged posteriorly to the segment of the thirteenth vertehra. Ureters of hoth sides mu side hy side in the narow portion of the kidners, and become conflnent just at the posterior eud of them.

Venules to the eutaneons rein are armaged in two alternate rows. Thoso of the exterior side pass over the cutaneous artery after joining many minute canals in the chiai plexns, and those of the inferior side unite to the cutaneous rein, just after joining minute eanals. Arterioles from the entancons artery are ananged in two rows, one row on the romotest side from the accompanging entancous rein, the other on the nearest side to the rein. Arterioles in the former row are nearly twice more numerons, lant smaller than those in the latter row. Thus two sheets of vascular plexms are formed from cronps of the two rows of both arterioles and vemules. Cutamenus ateries are sent from the dorsal aorta just below the eighth vertelma. The posterior cardinal vein is insignfieant. Segmental veins in the precandal region and in some anterior caudal segments manirg towards the rertelmal column are divided up into minute vessels there. Venous blood from these ressels seen to be takon up by eapillaries of the dark red portion of the lateral monsele.

Intestine longer than in the other Japanese tumbies, the third hend of it reaches nearly the first. Three lobes of tho liver are thick, and triangular. Only a few, short, sparingly branched venules on the external surfince of the middle and left lobes. Bulbons masses of vascular plexus are found on the inner side of the liver. These masses are slender and elongated, as the arteries in them take no purt in the formation of tho plewrs, hat man through them nearly straight.

Preoperele higher than broad, and the interopercle is nearly as high as broad. Hremal spines in tho precandal region are mather long. Parapophyses well dereloped, long, flattened at the distal end. They are directed downward from the ninth vertebra, and form the haemal arch from the tenth rertelm. Cundal vertelnate not so well developed as in other tumies.

Back nearly black to greyish blue, sides silvery; and the iris silvery with bhish tint. Dorsal fins groyish, tinged yellow at the margin or the tip, finlets sellow. Pectorals are black at the dorsal side, but greyish at the rentral side, and the tip is sometimes washed with yellow. Veutrals aro
greyish and tinged with yellow, while the anal is white with the yellow tip. Anal finlets are greyish with yeliowish margin. In young specimens under 7.5 kg in weight, the sides are greyish with a few colourless lines aud series of colourless dots, rmnuing transversely.

The flesh is pinkish in colom, rather soft, especially in young individuals. Thus this species is considered a little inferior to the common tunny.

Very voracions fish, feeding on sauries, bonitos, luminous fishes, such as Maurolicus, and allied kinds, cuttle-fish, aud Amphipoda, Sergestes, Acantheplyra, etc.

This species lives in a deep layer of water, ca. 20-120 in below the smaface, $13-25^{\circ} \mathrm{C}$ in temperature, in offshore waters. Northern limit of distribution is ca. $36^{\circ} \mathrm{N}$. Canght at the sonthern coast of om country and also at the Ogasawara Islands, Ryukyu Islands, and Taiwan. Not yet known from the Japan Sea. In 1920 I observed a similar or the same species at the market of San Pedro, but as I did not examine the avatomy in detail, I can not tell exactly to which species it lolongs. The broad body, the form of the liver, hepatic remles, ete. were nearly the same as the Japanese species. Japanese fishermen say that this species occurs in Hawaiian waters too. Prolably widely distributed in the deeper layer of the snbtropical region of the Pacific Ocean.

At might the fish seems to come near the surface, as do other species of tumnies, and on moon-light nights catches are generally goor.

The fish grows to a total length of cia 2 m with a weight of ca 86 kg . Fish of ca 70 cm is the smallest fish caught. I fonnd skeletons of small exmples, ca 30 cm in length in the stmach of a Neothunus macropterus, aught near the Ogasawara Islands in Jannary 1919.

Hirorata Iashino (78) is probably the first anthor who has written about this species, distingnishing it from the other species ly the larger eyes. Well known authors after him mention this species in their list of fishes. Thus this species seems to have been canght in our conntry from about the beginning of the nineteentli century.

Though this species has many distinctive characters, it is rather ditticult to identify it, especially when there is no other species to compare with. Sometimes wre receise reports that this species has been cancrlat in pound-nets; but we are inclined to doubt the accuracy of the reports, as it is, so far as we.
know, pelagic and does not approwh the const.
Krtamara (48) identified this species with Thynmus sili of Schlegeld (67), but the latter anthor writes that the species is very :common, during smmmer months, and is canght in lmailreds at a time by means of nets of large dimension. This statement is mot adequate for the present species. Moreover there are no docisive charmeters in the description ly Schlefiel, except the long pectorals and remark fomnded this species with Neothumus macropterus. Cunsrngman (10) considers this species to le identical with Thynnus njesus Lowe of the Atlantic; burt our species differs from the latter in the colom of the secoud dorsal, and the anal at least. Aecording to Cunningham these fins lave "some black at edges, lut little or no yellow." The descriptions of Thynmes obesus ly Lowe (52) as well as Conningham are very incomplete. Tt is allied to the present species in having large eyes, and a short, thickset fignve. But as the other important strnctures of Thimnus obesus Lows are unknown, it is impossible to ascertain the relation between these two species.
liecently the catch of this species is said to have much increased, due to the use of long snoods among snoods of normal length on at long line. The lower end of these long snoods will hang in a layer of water, deeper than 5720 under the surfare of the sea. At present this species is very rommon in the grounds near the month of Tokyo Bay.

Gemis Neothunnus gen. nov.

Cataneous hlool-vessels are found from the segment of the seventh vertebrs. Posterior eardinal vein is united to the right Cuvierian duct, and the former vein is connecterl with ib plexus of bloorl-vessels in the haemal caual, so that the haemal urch is remarkably wide. The first haemal arch is fonnd in the 11th vertebra. On the exterior surface of the liver we find no minute veins. Caudal vertebree elongated, and accordingly the candal portion long.

Hey to the the Japanese species of the genus Neothumuts.

dir-bladder absent, second dorsal and anal slightly higher than the first torsal.
N. rarus.

Neothunnus macropterus (Schlegel).

Kihata or kiwada, gesmnaga, lashibi, hatsu, hirenaga, itoshibi,
kiuhire, kimedi (immature).
Figs. 13, 19, 23, 45, 51.
Thynnus mucropterus, Schlegel, Fauna Japon. Puiss. 98, Tab. 51; Day, Fish. India. 253, 1832.

Orcynus macropterus, Kitahara. Journ. Fish. Bur. MI. 2. Pl. 2. Fig. 3, 1897. térmo marropterus, Jordan \& Seale, Bull. Bur. Fish. XXV, 22s, 1906.
Thumnus macroyterus. Kislinouye, Sui. Gak. Ho, I, 19, P1. 1, Fig. 12. 1915.
D. 13, 14, 9. A. 14-15, S-9. Gill-rakers $9+21$. Scales ca. 270.

Body fusiform, elongated, head small, and the caudal portion long. Scales minute. Pectorals long, pass berond the origin of the second dorsal, their dorsal and rentral outlines are nearly parallel to each other, and are connected by a short oblique side near the distal end. The second dorsal aud the aual are much elongated, especially in a variety mamed itoshibi or gesumaga, the tips of these fins are whitish and reach to the base of the candal. So far as I have examined there is no marked difference in anatomical structure between the long fimed variety and the ordinary form, except in the length of the scoond dorsal and anal fins.

No venules on the surface of the liver, the left lole of which is sometimes divided into two, and the right lobe is longer than the other. Prloric coeca as : mass is shorter than the stomach. Intestine rather short, the third bemel scarcely reaching the middle between the first and the second. The rectum is also short. Air-bladder narow and long not divided at the anterior eud. Thick strong comnective tissne protects the rentral part of the air-bladder.

Venules to the cutaneous vein are arranged in one row on the side towards the lateral median line. These venules rum orer the external side of the entaneous artery, after uniting many fine rounk. Arterioles from the cutaneons artery are arranged in one or two alternate rows from the side near the lateral median line. Cutaneous blood-ressels are found at the surfice of the lateral muscle behind the origin of the first dorsal. A cutameous vein ou ench side of the hody pours separately to the Curierian duct of the respective side, or is united to the cardiual rein below the ninth rertebra, and in the kidneys. The cerdinal reiu joins the right Curierian duct. In the hamal caunl the cardinal rein is nuited with in plexus of short trausperse
venules forming a dark red rod of plexus with similar aterioles from the dorsal aorta. It is remarkable that this rod of vascubar plexus is found in the tumuies which wat the conical rassular plexns on the imer side of the livere

Kidneys are much elongated posteriorly, reaching to the segment of alout the fiftecuth vertebra. Ireters are mited forming min acute angle muder the thirternth vertebra, and the common ureter is fond belind the retebra. Thus the weters are shaped like the letter I.

Vertebral column rather slender, and the second vertebat is nearly as high as broal. The posterior caudal vertelnae are remarkably elongated. Pampophyses long and flattene? Whey becone more or less vertical in the eighth vertebra, tumel downards in the ninth vertebra, and an arch from the elevesth rertebra. Haemal canal wide, especially in the precaudal region, where the breadth of the carity is nearly e pall to thet of the middle part of the respective reatehra. In one specimen I fomed the dorsal and ventral spines of the 36 th rertebra short and nearly horizontal, instead of long and cavering those of the next vertebra.

The colone is nearly black at the hack, sides greyish with oblique transierso lines and series of dots of siluery white in alternation. Tris gqeenish rellow ; first dorsal greyish tinged with yellow; tips of the secoud dorsal and dorsal finlets bright yellow ; pectorals blak on the inner side, greyish or sometimes yellowing on the outerside; rentrals greyish, tinged with yellow; anat aud aunl finlets bright yellow:

Distribution very wide, found in the Itdo-Pacific region. Prefers wam water, $15-25^{\circ} \mathrm{C}$ mostly in the water of ca. $20^{\circ} \mathrm{C}$. Northem limit of the distribution is ca. $35^{\circ} \mathrm{N}$, but sometimes fomm beyond $40^{\circ} \mathrm{N}$. Occasionally foum in the Japan Sea, and is eaught in Hokkain, near Otarn, late iu summer. Found in the Hawaiian raters and south Cialifomian coast.

Lage specimens measure more than 7 m in leugth, and ea 200 kg in weight, next in size to our common tunns:

Thoy swin near the surface of the sea, especially in summer, and closely approach the land; but suall immature fishes cal. 2 kg in weight are alwiys in the off-shore grounds, accompanying a sehool of the striper bonitos. Larger ones are catught by troll-lines, long lines, drift-nets, eirele nets, poundnets, set nets, etc. Swaller oues are enught with rods and lines, circle nets,
more than 7 m in lengsh, and ea 200 kg in weight, nex in size to our common tmony, etc. The variety called gesunaga is said to be shyer than the ordinary frm, not easily liting hooks, thongh it swims ver'y near by and often t nches them. The longer-finned rariety is said to be plentifnl in antumn.

The flesh is beantifally pinkish, firm, and its taste is excellent. Mostly consumed fresh, heing much esteemed for "sashimi". Many immature fishes wre used for making "fushi" by smoking and drying after boiling in water.

They feed on flying fish, coffer-fish, some deep-sea fish, calamries, pteropods, heteropods, Hyperina amphipods, Squilla's larrae, and immature Squilla, mega1 pas of crabs, etc.

The spawning season of Neothumus macroptenus is not yet known. Some specimens examined in antunn at Kyushyu are said to have contained large oraries.

This species is allied to Thynnus albccorce Lowe, so far as its external charicters aro concerned, so that Günther and Cowningham consider the former to be identical with the latter; but as in the case of the other exotic species the nantomy of Thunnus albacora lias been little studied, therefore it is impossible to determine the question.

Neothunnus rarus (Kishinonye).

Foshinaga, bintsuke, hashibi, sciyoshibi, shiroshibi, tongari.
Figs. 24, 48, 64.
Thumues rerres, Kishinouye, sui. Gak. Ho, I, 23, Pl. 1, Fig. 13, 1915.
D. $13,14,9$. A. 14,8 . Gill-rakers $5-6+15-17$. Scales ca. 220.

Body hroad, head aud eyes comparatively small, snont short, and eandal prtion elongated. Scales minnte. Curve of the lateral line above the pectoral very gentle. The number of gill-rakers is minimum in our Plecostean fishes. Pectorals broad, lancellate, scarcely reaching to the vertical from the last lut one spine of the first dorsol. Second dorsal and the anal are a little ligher than the first dorsal.

Light lobe of the liver longest. Air-bladder absent. This is the only link of the Japanese tunnies, which lacks it. The posterior end of the biluegs is rory uarrow and extends nearly to the segment of the fifteenth vertelna. Ureters are mited to a common duct under the 12 th vertebra.

Vemules to the cutameons rein are arranged in one row, onl the side towards the lateral median liue. These reunks run side by side with the arterioles, and are muitexl to a large ressel just lefore joining the cutancons vein. The upper half of the dianeter of the cutancous artery is concealed muder the cutaneons vein, and moterioles from the cutmeons artery are artangeri in one or two rows, and more mumerons than the reunles, are sent from the exterior median line of the cintacons antery. A cutaneons vein on each side of the body joins the cardinal vein below the ninth rertehra, and the cardinal rein pours into the right Cuvierian duct. Wach cutameons rein sents at large hranch to the kiduevs, before joining the cardiual vein. This is a renal portal rein.' In the hatmal canal a thick roxd of plexus of tramsverse arterioles and venules is joined. The diameter of the plexns is a little broaler thau that of the vertehra in the precaudal region. The second branch of the coeliacomesenteric: artery nomishes the right dorsal side of the stomach, spleen, and iutestive.

Second vertehna wider than high. Transverse processes are not well developed and are turued dowuwards from the ninth rertebra, and the haemat arch is closed from the 11th vertebra, as in Neothmenus macropterus.

Back greyish blue, sides silvery greyisl with colvorless elongated spots in about five longitudinal rows. Dorsals, pectorals, and the ventrals halakish, hut the tip of the second dorsal and the anal is washed with yellow. Aual fin silvery. Fiulets, both dorsal and aual are yellowish with grevish margin.

Smallest trumy wot only in our waters, hat perhaps in the world. Fish about 70 cm in length and ea 6 kg in weight is common. Such a small tunny contained large and nearly ripe ovaries in Febriary. Fish-mongers tuld me that a 12 kg fislı is maximum.

Flesil is pale in colour, fatty and rather soft, hut its taste is rery uice.
Very limited in distribntion. Found on the western and sontheru coast of Kyushyu and ou the sonthrestern part of the Japau Sca. So far as I know, it is caught very near the coast, rather rare, and was quite unknown to science, till I got it from the market of Tokyo in 1913. People of the market considered it as :s raricty of Neothumus macropterus. It is rather striking that this species remained unnoticed for a very long period. In autumu a few examples are said to be found every day in the market at Nagasaki.

Canght in pound-nets, and sometimes with rods and lines iu littoral water
in association with small bonitos.
This species feeds, s) far as I know, on small fishes ouly;-one specimen contrined two mackerels in its stomach, the second specimen fomteen examples of Stolephorus glucilis, and the third three half-bealis and some anchories.

On December 17thl, 1918, one of this species was found dead on the beach near the mouth of Gonokawa, the largest river in Shimane-ken, probably scared by killer-whales or some other ferocious enemies.

Family KATSUWONIDAE Kishinonye.

Katsuwonidae, Kishinouye, 1917.
Body plump, rounded in cross-section, and naked outside of the corselet. Lateral line without a marked uudulation above the pectoral fin. First dorsal very high at the anterior end, becoming suddenly low behind. Second dorsal remarkably lower than the first dorsal, and the anal and second dorsal are smaller than the rentrals. Pectorals very short and triangular. In this family the haemal canal is closed behiud the middle of the precandal region. Dentition weak, generally only one row of small tecth in both jaws. When teeth are found in other bones, they are arranged in one row onle, wever more. On the roof of the mouth-cavity no dentigerous calcareous plates. Tongue smooth with a ridge on each lateral side. No air-bladder. Prl wic coeca minute, numerous, uniform in size, and developed on the terminal branches of pytoric tubes, arangea on both sides of the duodenum. The loose and thick membrane surrounding the stomach in the Thunnidae is not found in this family. Three lobes of the liver nequal, and generally the right lobe is much elongated, except in the genus Katsuwomes. Intestine very short, without a loop. Rectum is nearly the same in length or a little louger than the remaining part of the intestine. The longitudinal folds of the internal layer of the duodenum extend to the straight small intestine, just to the begiming of the rectum.

The circulatory system which is related to the formation of the dark retr portion of the lateral muscle, differ more or less from that of the Thumidac. In the present family the cutaneous blood-vessels are also two in number, on each side of the lateral median line ; but the hypaxial vein is divided to renal portabs, and the lypaxial artery passes throngh the kidneys, taking a slight downwarl couss, and mos backward anterior to and above the series of the ribs. Exept
in the case of the gemus Fidsumonus, the hypaxial hood-vessels mere meln smaller and sluorter than the epaxial, and the plexus of blowd ressels surromating the diark real inention of the lateral muscle are moited to the epaxial blood vessols only. Inderel the epaxial blood vessels of the hatsamonidae seem to comespond to the entire cutmeons stistem of the Thumidae, and the hypaxial ressels of the former seem to he sui generis. The posterion curdinal rein joins the right Cuvierion dinet, and joining this cardinal vein is a small renal rein. The internatmal rod of the viscular plexus attains the utmost development in Fifsuronus and Euthymus. The rod is thicker than the diameter of the rertelral column, and is protected by the hony trellis formed ly haemal processes of the colum, from the enormuls development of the inferior formen. In the genus Auxis, however, the interhaemal roxl of the vascular plexins is very thin, and the inferior formen is formed in in few eaudal vertebrae only, having no relation with the vascualr plexus.

Fidneys much elongated. Ureters are nearly separate, muning almost parallel to each other in the posterior slender portion of the kidneys. The spleen is smaller than that of tunnies and is situated at the anterior portion of the visceral carity.

In the hypazal dark red portion of the lateral muscle, just lelow the series of intermuscular bones a large strong tendon from the second vertebra is sheathed with thin layers of some muscle segments, from the myotomes of the third aud some succeeding vertelnae. Thus in each epaxial portion of the lateribl musele two concentric rings of muscle segments are found in the crosssection. Tlis is quite clameteristic of the Katsumonidae. The axial side of the lateral muscle suects the axial skeleton in the epasial as well as the hypaxial portion, and the dark red portion is more voluminous than in the Thunnidae.

The vertebral column is very firm, light, and compact, allowing no lateral botion. In anterior precandal vertebrie the nemral camal is separated from the catual of the spinal ligament by a thin boyy septum as in the Seombridae. Neural process of the first rertebra is more or less united to the centrum and the posterion dorsal zygapophysas are very well developed in the vertebra. Parapophyses are quite abortive.

Dentigerons assicles on the gill-arches are large and are arranged in one row only. Internal gill-rakers ire well developed.

Long intermuscular boues on anterior precandal veriebrae, which have their distal end at the surface of the body are fonud as far as the seventh rertelra. Fiom the eighth vertebra backward some long intermuscular lones tre also found, but they are not ossified in the middle portion. Intermuscular bones are well developed and are found on every vertebra, except those which have the lateral keel, and behind the attachment of intermuscular bone there is a pointed tubercle in the vertebra.

Esternal and internal portions of the clavicle are perpendicnlar to each other.

Below each eye an oral black spot is generally found. This colour spot is distinct, especially in the genns Auxis.

Fishes of this family feed chiefly on small fishes and medium sized plankton. They are liable to perish sooner than those of the Thmunidae.

Key to the genera of the Katsumonidae.

```
The first dorsal is continmous to the second, a pair of fornmen on the dorsal
    surface of the skull, inferior foramen of vertebrae well developed, thus
    the so-called trellis is formed.
        Both epaxial and hypaxial blood-vessels under the skin are equally
            well developed, teeth in both jaws only, vertebrae 20-21............ &utsurcmus.
        Hypaxial blood-vessels under the skin are atrophied; epaxial blood-
            vessels run just above the lateral median line of the body.
            teeth in both jaws, palatines, and sometimes on the vomer too,
            epifaemal spines well developed, vertebrae 20-19. ...................Eulhymzus.
The first dorsal is not continnous with the second; no foramen on the dorsnl
    surface of the skull; hypaxial bloodvessels under the skin are atrophied;
    teeth in jaws only; inferior foramen scarcely developed; epilhamal spines
    well dereloped, long; vertebrae 20-19
                            Auxis.
```


Geuns Katsuwonus Kishinouye.

Katsuronus, Kishinonye, Sui. Gak. Ho. I, 21, 1915.
Body plrmp, rounded in cross-section, and we find a few minute scales seattered in the thick skin, outside of the corselet. Teeth in jaws only, about forty in each. Gall-bladder long, nearly free from the liver, aud runs along the dorsal side of the intestine.

The cutaneons circulatory system is unique. A pair of cutaneous arteries branch just behind the insertion of the pharyugeal muscles as in the tumies and other bonitos; lout passing through the kidueys the arteries turn outward aud
forward, instead of tuming more or less backward is in the other plecostean fishes. Each artery reaching to the mootome of the first rib is divided intu two arteries, epasial and hypasial. Tho epaxial artery runs helow the first ril), while the hypaxial artery rus above the rib. These two arteries, are nearly equally developed, and ure separated from each other at a distance of $6-8$ times the breadth of tho blood-vessels. These arteries do nut form a loop at the candal region. The cutancons artery and cutaneous rein lie in juxtrposition, nearly flat at the surfice of the body. Arterioles and renules connected with these cutmeons canals rum in opposite directions, along the surface of the body, and they are not so numerous as in the tnanies. The rod of the rascular plexus in the haemal canal is called kurochiai by fishermen, and it is thicker than the diameter of the vertebral colmm.

This genus is closely allied to the genus Ncothumus of the Thwnidae and stands quite near the genus Euthynnus. Number of the precandal vertebrac comespouds to that of Euthynnus, while the number of eandal rertebrae is equal to that of the Thuunidac. Thus the total number of vertebrae is 41 , while in all the other genera of the plecostean fishes the number is always 39.

Ouly one cosmopolitan species is known from the temperate and tropical regions of the world.

Katsuwonus pelamis (Linnaeus).

下atsuwo, maratsuwo, mandaragatsuwo.
Figs. 5, 14, 19, 25, 52, 57.
scomber pelamis, Linnacus, Ssst. Nat. X, 297, 1.5%.
Thynnus pelamys. Cur. \& Val., Hist. Nat. Poiss. ViII, 113, Tab. 214, 1831 ; Schlegel, Fauna Japon. Poiss, !6, Tab. 49, 1850; Günther, Cat. Brit. MIus. II, 334, 1860.
fiymnosarde pelamis, Dressler de Fesler, Bull. C. S. Fish Comm. VII, 436, 1889, Jordau \& Fivermann. l'ish. N. \& J. America, I, 869, 1896.
Eathymaus pelamis. Tanaka, Fish. Japan. I-X., 140. Pls. 37, 39, 40, 1912.
Fatsurconus pelamys, Fïshinouye, Sui. Gak. Ho, I. 21. Pl. 1, Fig. 14, 1915.
D. $12-17,11-14,8$. A. $11-15,7$. Gill-rakers $15-20+36-39$.

Body plump, sharply pointed at both ends, Lateral live slightly curved upward above the pectorals and hent below the secoud dorsal, and nearly horizontal in the caudal portion. Gill-rakers numerous, rery thin, and their inuer margin undulating. The right lobe of the liver is small and slender.

Plexus of remles from the posterior cardinal rein forms a long continnous
mass like a rol with the plexus of anterioles from the dorsal aorta to the vertical of the niuth vertebra; but auterior to the vertebra the plexus is discontinned and is divided only into small bundles of remules.

Fidneys are much elongated posteriorly. In the haemal canal, below the rertebral column, there is also ia renal body.

The back is dark bluish riolet, with some transverse light coloured markings, the sides are silvery with four or more dark coloured lovgitudinal bands on each side. Dorsals, dorsal finlets, pectorals, aud the anal are dusky. Tris silvers, with it greenish shade.

The bonito lives in the clear blue water of the Kuroshimo, $20-30^{\circ}$ in temperature, and $1.024-1.026$ in specific grarity. On the Japan Sea, this fish is caught in small numbers, late in antumn or in winter only, there being no special fishing for this fish. On the northeastern coast of Hondo, the bonita is generally caught in grounds very far from the land, $100-200$ miles off. In spring bonitos begin to migrate northward, and reach the ground off the southeastern coast of Hokkaido in summer. Sometimes the fish makes big shoals of several hundreds to thousands, and when they attack a school of small fishes, such as sardines and anchovies, they surromd the latter till the victims form a dense spherical mass. Then the bonitos feed gradually on the stragglers from the school, swimming around outside the mass. Generially they feed on the medium sized planktou:-amphiporls, Squilla's lartibe and other crustaceans, pteropods, heteropods (chiefly Atlenta), calamaries, and immature or small fishes, etc. According to experienced fishermen, bonitos are said to contain plenty of food in their stomach, when they are caught in large quantities with rods and lines; but almost no trace of food is found in their stomachs, when refuse to bite a hook. This is true also of the tunny fishery by means of long lines. Though bonitos and tmunies aro very voracious and bite it hook easily and eagerly, especially when they are in a frenzy of competition to get as much food as possible, jet they are coal and cantious when there is only a little fool. And in midsummer when the reprodnctive elements become ripe, bonitos seem to fast. In the water ronnd liynky and the adjacent islands we find smabl bonitos about 20 cm in length in August, and in Jamary I bave obtained small bonitos ca. 30 cm (withont caudal) from the stomach of tumuies, canght near the Ogasiwara

Islams. These immature fishes are vory slember, have faint longitndinal colome bands on the sides and the souty helly. These fishes are most probably yanlings, hatehed late in spring of the preeding year.

Bovitos are sensitive fishes, being frightenel away when the wat.r is stimed with blond, when it follow fish is struggling furionsly in it net, or when a bllow fish makes in narrow ascipe from a net or a hook. Therefore shark-fishing with it long line in the fishing gromud of the bonito is considered in several districts to ho harmfnl to bonitofishing, as the death-embat of sharks is generally irecompanied with blood-shed, which scimes the bonito awaty. Long lines for the bonito are also believed to be injurions from a similar cause. Drift net fishing for bonitos and tomnies is also hated by the bonitu-fishermen, as well as the cirele-net fishing for these fislues. Bonitos are very active and powerful, bat they are not tenacions of life and can not withstand mfarumble eonditions long. Thas when canght in it drift net or a drift long line they very soon succumb. In this point bonitos seem to differ very much from tumnies.

Lonitos are very good swimmers, their velocity leing roughly estimated to be more than 25 miles in hour. They migrate in shoals in scarch of food, and do not stop at any particular spot for a long tine, thongh they often remain fur a while ronnd shallow binks in is warm clear water, iss several kinds of small fishes are always found in such places.

Bonito-fishing is carried on at the Parifie const of onv empire, in Hokkaido in the north, as an important industry. On the west const of Kyushyu and in the waters romd the Ryykyu Islands and Taiwan this fishery also thrives. bonitos are chiefly eanght with rods and lines, alluring it shoal of fish with live baits thrown from the boat, as the net-fishing is not suitable, owing to the clearness of the water. Loug lines are sometimes used. The snood is $3-4 \mathrm{in}$ in length and the distance between two consecutive suoods is abont 8 m . These lines are slender and not very strong.

Bones of this fish are found in the remains of shell-mounds in the northcastern part of Hondo. In the "Yeugishiki," a classical work on ceremonies in the imperial court, etc., compiled in 927 , many kiods of food prepared from the bonito are emmerated, and these aticles were given as tribute to tha govermment and the inperial comt. In an article in "'surezuregnsu," is well-
known literary work hy Kenko Loshida at the time of the Ashikaga Shoguns, it is stated that the bonito was rabued in Kamakua at that time, though it lad been condemed as an inferior fish in previous times. In the time of the Tokugawa Shōguns, however, an extravagant price was paid for an carly arrival of bonitos in late spring in Fedo, as was the case with the mackerel in London in former days. Many slourt poems called "lookku," mostly satirical, were written abont the early bonito at the time, and many extroordinary tales are still told about it. At that time the fish was eaten raw as sashimi. Early in summer the generative organ of the bonito is still small, and the climate is not yet so hot as to cause quick putrefaction of the fish. Therefore bonitos of prime condition were obtained in this season, and at this tine the fish was caught near the coast and was sent by express rowing boats, manned by about ten men to each boat. Thus the gastronomers of Iedo were able to taste bonitos in a prime condition, and to enjoy the rery rich flarour a few homs after they were canght. At present honito-fishing is conducted in rery remote grounds only, and though canght in early spring, the fish are brought to market, preserced in ice, two or three days after capture. Consequently their choice flavour leing lost, early bonitos are nowadays no longer estimated by epicurians.

It grows to a leugth of about one metre, generally 18 kg in weight, rarely 25 kg . Spawning seems to take place from May to Angust. Tunnies and spear-fishes are enemies. Rihynchobothrium is ineritably fonud in the flesh of the bonito, especially abnodant in autumu. Bonitos canght in off-shore waters contain a muclı smaller quantity of fat than those caught in littoral waters. The flesh of bonitos is longitudinally cut into form pieces and then smoked and dried after boiling in water. This dried article cabled "katsurvobushi" is a necessary article in our honsehold, being used as a condiment after shredding. Its aumaal production is ca $11,000,000 \mathrm{~kg}$.

Genus Euthynnus Lütkeu.

Luthynnus, Lütken, MS. in Jorlan \& Gilbert, Syn. Fish. N. Imerica, 429, 1883.
Body plump, romded, and naked outside of the corselet. Nouth rather large, maxillary reaching the rertical from the centre of the eye. Teeth more developed in size and number than in the other genera of the Katsumonidae.

They are fund net only in beth jaws, but alsu on the pabatines and sometimes on the romer two. Teetly an the palatines are in single row. The right lobe of the liver mach elometated as in tha gimes Anxis. It is remarkable that the chiof entaneons artery rmens alonire the domal external side of the chiet antaneuns rein, grite esutrary to tho ease in all the other forms of the plecostern lishes, and the dorsal segmental hrathes of the dhicf cutaneous rein pass orer the aceompanying artory, which is a little more or less deeply imbedded in the muscle. The degenerated hypaxial entancons artery lies ventrab, that is exterual and similarly to the acompanyiner vein. Ilypaxial, cutancous bloordvessels are bent in a zigzag line. They lave no councetion with the vascular plexus, nourishing the dark red prortion of the lateral moscie. The subspinal rod of the rascular plexus is also well derelopel, l, at the rod is separated from the vertebral colnm hy the derelopment of the "pilaremal process, lextween the vertelral colmm and the hamal canal. Thas the inferior formen is remarkal ly larger than in the genus Fatsuromus.

Dark warkings in the maked part of the lauck, and generally some greyish spots in the pectoral region abore the rentrals.

Fishes of this genus attain about the same size as the striper bonito. They are degenorated forms, derived from the genus Fetsuvomus. Voracions fishes of temperate and tropical sear, not forming large schools, and often rpproaching the coast. Cntil recently only one species was known, but I lave found other two species in the Pacific, quite different from the Atlantic suecies.

Key to the species of the geans Euthynmes.

Euthynnus yaito Kishinouye.

liaito, limgatsmwo, olbogogatsuwo, segratinw, suma, uramawnigatsuwo, watanale, fait paria, faitosuma.

$$
\text { Fiss, 26, 54, } 5 \mathrm{~S} .
$$

Thynnus thunnivt, Schlegel, Fauma Japon. Toiss. 95, Tab. 49. 1850.
? Thynnus affinis, Cantor, Cat. Malay. I'ish. 10f, 1950.

Euthynnus yaito, Kishinouye, Sui. Gak. Ho, I, 22, Pl. 1. Fig. 15, 1915.
D. $15-16,12-13,8 . A .13,7$. Gill-rakers $8-10+22-24$.

Vomerine teeth present. This character clearly separates this species from the allied species of the Atlantic, with which it has been hitherto confonnded, as the presence of the romerine teeth in this species lad been overlooked. Vomerine teeth are arranged in one row on a lovgitudinal ridge. Palatine teeth are also on one row only. The upper jaw has 27-30 teeth, while the lower has 24-27. Gill-rakers in this species are fewer in number than in the allied species of the Atlantic. The latter has 11-28.

The cutancons artery sends arterioles from the inner and lower side in one row, while the reumles to the cutaneons rein are arranged in tiro rows, alternate on the inner side. To the epaxial cutaneons llood vessels both the upper and lower segmentary hrauches are convected.

Skull broad, its breadth is contained $1 \frac{1}{3}$ in its length. The allisphenoid and prootic meet, and form a bridge over the groove of the prootic. 'ITro pairs of the ausiliary intermoscular hones are fomd on the donsal surface of the exoccipitals, one pair of which is sitrated just abore the foramen of the spinal cord, and the other at the lower and of paired rertical ridges continned from the top of the epiotic. The supraoccipital crest is rery broad, and its vertical side meets the fused median ridge of the exoccipitals. In the specimen fignred in fig. 53 the caudal vertebrae are rery long.

Back bluish black with many dark oblique hands. Belly silvery with three or more greyish spots below the pectorals. Fins black or greyish, the voutrals are partly black and fringed with chalk-white. Iris silvery with beautiful reflection. A black spot muder each eye.

Found chielly is the southern part of our empire. The northern limit of distribution seems to be near Chiba-ken on the Pacific eanst. Lately Mr. K. Nomura sent me a spucimen of this specios, eanght near Tsmugib, Fukni-ken in Octoler, 1921. This is the first specimen from the Japan Sea. Among specimens of scombroid fishes from the Dinteh Iudies, kindly sent hy Mr. Gobee, I. fonnd three immature forms of this species, lut the sonthem limit of distribution is not jet determined.

This species is rather rare, aud is not found in schorls. As it approaches the shore, in few eximples :we sometimes canght in drag seines and pomet-nets.

Also caught with rexls and lines associater with honitos and immatme tmmes.
Voracious fish, foeds on swall fishes and medimn sized plibukton. When this fisb eaconuters a selionl of small fishes, it darts into the crowd and scatters them in the same way as the pelamids and tunvies.

This fish attains at tutal length of ea 60 cm , and a weight of eat $3!$ kg, but ravely a fish of one metre and mow than 10 kg in weight is found.

Spawning seems to tatke phere about in May in 'ruwatu. A young speciusen measuring 11.5 cm in length was captured near the month of lieelmer Harbour, on Augnst 29, 1917. It is slenderer than the udult, aud has ibont it dozen dark transverse bunds, more or less oblique. These bands pass the lateral line downwards.

Flesh more or less firm and pretty good in tiste.
Thymars uffinis of Caxtor seems to le identical with this species; but as le denies the presence of the romerine teeth, it may be it diferent specius. Moreover the colour of fus differs in Thynnus affimis. It is said that the second dural, aual, and their spurions fins are pale brownish rellow, edged aud washed with black; while the caudal is yellowish buff, washel with lrownish iv the centre.

Euthymnus lineatus Kishinouye.

Eitlyynnus lineatus, Kishinouye, Sui. Gak. Ho, 1II, 113, 192).

This species was created on a siugle specimen from Minzanillo, Mexico, collected by Mr. Naotaro Ota, in 1915. It differs from the other known

Fig. Z. Euthynmes lineatus 1,1.
species ly the presence of abont three longitudinal dark lines or rather hands in the naked portion ahore the lateral line. One row of teeth on the vomer and palatines as in Euthynnus yaito. In the new species the head is litger than in the other species. The specimen examined is 48 em in the tatal length. In the thoraeic part there are some spots or rather very short bands. Caudal portion very slender and short.

Genus Auxis Cuvier.

Auxis Cuvier, Regne Anim. II, 119, 2829.
Body rounded in cross-section, fusiform, and more elongated than in Fapoucoms and Euthamus. Candal portion remarkably short, while the preeandal portion is ver long. Suout short, month small. Teeth in both jaws only. Fins small, especially the second dursal, aual, and caudal. Posterior portion of the first dorsal has disappeared, and the fiu is moaly triangular in shape, and is not continuons to the second dorsal. In the median prolongation of the corselet, we fiud no indentation at the rentral margin behind the pectorals. Lateral line slightly eurred with small undulations. Tongue flat, smooth, and siltury.

Basioceipital together with the purasphenoid form paired horn-like processes behind to support the first rertubra above. Exowipitals fused to one piece of bone, with a prominent dorsal mudian crest, just below the suproceipital erest, thus affording a strong hokl for the iusertion of the literal muscles. Deep transterse depression along the sutare hetween the proutic and alispheroid, corresponding to the rentral groove in the optic lobe of the brain. At the auterior border of the depression the alisphenoid is produced to a shelf to fartly coror the depression. Pterotic process long and broat horizontally. The sphenotie does not appear in the dorsal side of the sknll. Antero-snperior c.nner of the subopercle produced. One pair of auxiliary intermuscular bones on the coalesced exoccipitals, just abore the formmen for the spinal cort. Some intermusenlar bones behind that of the Sth vertebra aro divided into two portions and are comected by a ligament.

The first rertelma is uot elosely coaleseed to the skull, and the mper posterior aygapophyses are long aud large for the attachment of the claricular ligament. The nexral process of the first vertebrat is weak and small. In the
second vertehra the nenral process and the lateral transerse processes are remarkathly large. The former is for the attichment of the wascle of the first dorsal, and the latior for the attachment of a pair of strong tenduns from the rentre of paired small cones of myolomes. First three vertebrae have it juir of strong ridges or pillars at the rentral side respectively:

The centrmu of the succeeding vertelnae is shaped like an lomglass, as longitudiual ridges aro scareely dereloped in thom. Lateral keels are more or less developed in the majority of the caudal vertelrac, thongh many of them are not developed along the whole length of the side. In the precandal vertebrac, ventral processes arise from the anterior end only, and they are uniterl into a median rod, the epihaemal process of some length. At the distal end the rod is separated to parapophyses. The haemal arch and hamal spine are found in cantal rortebrat only. The epihaemal process is turned more or less formard in the candrl region as well, while tho hamal processes are turned backward. Both neural and hamal processes from the vertobre, with the exception of some candal ones, are laterally compressed. Fren in the first candal vertebra, the epihaemal process is more or less thrned furward and the process of that rertebra makes nearly a right angle with the haemal arch. The so.called trellis formed on the ventrol side of the vertebral colnmn is scarcely developed in this genns. Sparions interveurals are fomd between the two dorsals.

Epaxial entaneons blood-vessels ruu noar tho lateral median line, and are nuited to segmental branches of buth epaxial and hypasial sides. These blondvessels form shects of the rasenlar plexus round the dark red portion of the lateral muscle, as the hyparial entancous blood-ressels are atrophied as in the genus Euiluynus, and take no part in the formation of the plexus. The rod of the vascular plexns betweon the parapophyses in the procandal region and in the haemal canal in the caudal region is thin and mueh degenerated.

The dark red protion of the lateral muscle the chiai is brondest near the rertebral colnm, as the chief axial blood-ressels are far removed from the latter. A comparatively large portion of the lateral muscle is coloured dark red. Besides a concentric sheath of muscles round the strong tendon from the second rertebra, there is another smaller concentric sheath of muscles round another tendon on the extemal side of the anterior purt of the cutaneous blood vessels.

The dendritic course of the hepatic rein may distinctly be seen on the exterior side of the liver. The right lobe of the liver is exceedingly loug, the other lobes are short and rather indistinct. The mass of the prloric coeca is much shorter than the stomach. Kidneys are elongated. Two meters are separated and open at the dorsal, auterior end of the bladder. Sexnal gland when ripened develops backward along both sides of the thick row of interspinous bones of the anal fun. This is due to the narrowness of the abdominal carity:

The back is dark greenish, it becomes dark bluish after death. Sereral oblique bands in the scaleless part above the lateral line. Pelly silvery, with inridescent reflections. Oval dark spot below each eye.

Very widely distributed in the temperate and tropical waters. In wamm seasons the fish approaches the shore, often in large schools, and is caught with seines, pouncl-nets, drift nets, rods and lines, etc. This fish is also found in the Japan Sea. It swims in the deeper strata of water in cold months, and disappens in winter from onr coasts.

Very small in size, generally ca 30 cm in length.
The fish feeds on small plankton and small fishes, such as Athorino, Stolephorus, Sprattelloides, immature forms of Engraulis, etc. It is inferior in taste, as it is coarse and moreover very perishable.

In our waters there are two different species of fish belouging to this genus. They resemble each other so closely that they have long been confounded by natmalists, and were considered to be the same species as the Atlantic congener.
liey to the Japanese species of the genus Auxis.

Auxis hira Kislriuonye.

Hiramedika, lirugatsuwo, hirasohda, obosogatsuwo, slibuwa, soma, suma, etc.

Figs. 55, 59.
Autis hirt, kiishinonye, Sui. Gak. Ifo, I, 23, Ll. 1, Fig. 16. 1915.
D. $10-11,12$, s. A. 13, 7. Gill-rakers $9+30$.

Lurdy more or less compressed, its height is merrly equal to the length of the head. Middle limh of the corselct euls a little lixhimed the pectoral, and one or two rows of minute scales are fimel on cither side of the lateral line.

The hypaxial dak red portion of the latural muscle is larger than the epaxial. Myotones of some hody-segments seem to be sublivided in the dark red portion.

Long intermuscular bones, the tips of which are found to reach the surface of the body to the 11 th vertebra, and the list four of them are not entirely ossified, laaring the middle part fibrons. Thie lateral process of the second vertebra is longer than the retehra itself. The lamal arch of the first caudal vertehnel is lent with a more or less obtuse angle. In the 2.3 rd and some succeeding veltebrae there are paird downward processes from the eud of the haemal process, and thesc processes nearly reach the origin of the huemal spine of the preceding vertelrae.

This specits is rery widely distributed. Its northen rauge reaches to Hokkaido and is known from the coasts of the Japau Sea, Forea, Ogasawara Islaurls, Ryukyu Islands, Formosa, etc. Cauglit in large numbers in southern regions.

This species grows to a weight of ca. 1.5 kg .
Seems to spawn in summer . lieprodnctive elements are nearly ripe in August.

This species is not so mumeruis as the other but the flesh being firmer is superior to the cthe: in quality:

Auxis maru Kishinonye.
Marumedika, chiboh, dainanpo, magatsuwo, manba, mandara, marugatsuwo, nodoguro, rolisoku, suboti, uzuwa, ,tc.

Figs. 2, 15, 27, 56, 60.
? Ahdis tıpinosomu, Filecker, Verh. Bat. Geu. XXVI, 94, Thab. 7. Vig. 1, 1854-57.
? Scomiler thazard, Lacépede, Hist. Sat. Poiss. III, 9, 1892
Auxiv romei, Kitahara, Journ. Fish. Bur. VI, 3. PI. 4. Fig !), 1897.
Auxis maru, Kishinouye, Sui. Goli Ho, I, 24, I'l. 1, Fig. 19, 1915.
D. $9-10,11-12,8$ A. 13,7 . Gill-rakers $10+36$.

Budy fusiform, nemrly romuded in cross-section, and its height is smaller
than the length of the head. The widdle limb of the eorselet is prolonged hackward nearly the entire length of the lateral line.

The dark coloured portion of the lateral muscle is nearly equally large in the hypaxial and epaxial protious.

Depression along the snture between the prootic and the alisphenoid is sharply defined and narrow, and the shelf at the anterior border of the depression is obsolete. Only two intermuseular bones hare the middle portion non-ossified. The lateral process of the seconl rertebra is short and thick. Newal process of some anterior vertebrae is not so hroad as in the preceding species. The haemal arch of the first caudal vertebra makes a right angle with the epilamal spine. From the lower end of the epihaemal spine a pair of short free processes is produced downward and forward in some candal vertebrac. Free parapophyses from the lower end of the epihnemal process are short, and are but a little separated from each other.

This species seems to bs more abumdaut than the preeeding species. In distribntion nearly the same as the latter. Known from Sonth-Manchuria as well. Cauglit in pound-nets, set-nets, driit nets, rods and lines, etc.

Grows to a weight of ca. 640 g , the smallest speeies in the Plecustei.
Very poor food-fish, consumed fresh or salted.
Auxis tapeinosoma of Bleeker seems at first sight to be identieal with this species, but not exaetly, as the dorsal finlets of the former are characterised as 9 in number.

Bibliography．

1．Aratio E：1＇．The skall，and the eranial and first spinal uuscles nall perves in Scomber soomber．Juern．Morpl．1903，XVIII，45－32ヶ，

2．Alcock，A．－A baturalist in the Indinn seas．Londub，ID0）2
3．Blefker．P．－Niewe ualezingen op le ichthyologic ran Japan．Verh．Bainv．Genootsch． JKV゚1，1－132． 1857.

1．Boclenger，G．1．－Fishes（systematic Mart）．Cambridge Sat．Hist．VIT，121－727．Iondon， 1901.

G．Cantor，T．－Catnlugue of Malayna fishes．Journ．Koy．Isint．Soc．Beaga！XV1I，983－1042， 1819.

7．Castereneac，F．L．－Contribution to the ichthyology of Australia．Proe．Zool．Acclim．Sje． Victorin，1上，37－158． 1873.
8．Cole，F．J．\＆Jonssone，J．－Memoir on the common plaice．Rept．Lancashire Sca－fisheries Laboratory，A．Appendis． 1901.
9．Cotck，J．－The bistory of the fishes of the British Islands．London，1862－65．
10．Cunnwianar，J．T－Un the marine fishes nud iuvertebrates of St．Helena．Proc．Zool．Soc． Lonilon，86－131， 1910.

11．Cotier，G．－Piènge nnimal．Paris， 1817.
12．Cever，G．\＆Talescienses，A．－Histoire maturelle des poissons．VIII Paris． 1831.
13．Dart，J．－On the temperature of some fishes of the geuus Thynnus．1＇roc．Toy Soc．London． 325－329，1835．Ediab．New Phil．Journ．NLX，325－33）．

11．Dar，F．－Fishes of Indin．London，1875－7s．
15．－Fishes of Great Britain and Irelank．London E Edinburgh．1890－84．
16．Note on Orcynus thynnus．Ann．Mag．Nint．Hist． 5 ser．XVII， $400-102,1886$.
17．Deessiefi，F．B．\＆Feslef．B．－A review of the mackerels（Scombrinne）of America and Earope．Bull．C．S．Fish Comm．VII，42！－446． 1883.
18．Ehrenbucar．E－Report on the mackerel，preliminary account．Tapp．\＆Proc．Verb．Con－ ceil．Perman．Intern．Explor．Mer，Xiľ，10． 1912.
19．Escericht，D．F．\＆Mëler，J．－L̈ber die nrteriosen und renösen Wuudernetze nu der Leber des Thunfisches und einen merkwürdigen Man dieses Orgnnes．Ahb．Aknd．Wiss．Berlin， 1836.

20．Etermana，B．W゚．\＆Selle，A．－Fishes of the Philippine Islands．Bull．Bur．Fisheries，Kivi， 49－11ก． 1907.

21．Frusz，T．－Die japadischen konohenfische der Sammluagen Haberet，und Doflem．Abh． Bayer．Akni．Wiss．，1910．Suppi．IV：
28．Fuitta．Otaki nud Hegurasel－Fishes of Japan．Tokyo．1903－05．
23．Gins．T．N．－The proper generic name of the tunny and aibacore．Proc．［．S．Nat．Mus．天TT．693－691， 1893.
21. Goone, G. B.-Natraral history of the mackerel. Tept. U. S. Fish Comm. I.. 93-138. 1881.
25. Goode \& Bean, T. H.-The ocanic bomito on the const of the Caited States. Proc. U. S. Nat. IIus, I, 24-26. 1878.
26. Oceanie iehthyology. Special Bulletid. U. S. Nat. Mus. XXXV. IS95.
27. Goodrich, E. S. - Vertebrata, craninta. (Lannkester-Treatise on Zool. IN;) Londoa. 1900.
28. Greene, C. W. \& Gireene C. H.-The skeletal musculature of the ling salmou. Bull. Bur. Fisherics XXXIII. 35-59. 1913.
23. Günteer, A.-Catalogue of the fishes of the british Museum, II, 1860, London.
30. Fische der Siidsee.
31. - Au introdnction to the study of fishes. Ediuburgh, 1850.
32. _ Report on the pelagic fishes collected by H.M.S. Challenger during the years 1873-76. 1889.
33. Jordan, D. S. \& Evirmann, E. W.-Fishes of North and Middle America. Bial. U. S. Nat. Mus. XLJiI. 1896.
31. Jordan \& Richardson, IR. E.-A catalogue of fishes of the Islan 1 of Formosi, or Taiwan, based on the collection of Dr. Hans Sauter. Mem. Carnegie Mus., IT, 159-204. 1909.
35. Jordan \& Seale,-The fishes of Samoa. Bull. Burean Fisheries. XXV, 1936.
36. Joubin, M. L. \& Roole, L.-No:e sur lalimentation du thon de l'Atlantique (Germo alalongn Gmelin).
37. Tiagawaten Experinental Fishery Statron-Inquiry on the sawara (Cybium niphonium) fishery. (Japanesc). 1919.
38. Kaibara, E-Iramato Honzo (Natural history of Japan). 1708.
39. Kirshnouye, K.--The Japanese mackerel aud macierels from Europe and America (Japanese). Joura. Imp. Fish. Bureau, II. 1893.
4). Food (f fishes of the mackerel family (Japanese). Journ. Imp. Fish. Bureau, IV, 1895.
41. - Sconberomores Chinensis and Icanthoctbiom Solaydri (Japanese). Dobuts, Zasshi (Zool. Magazine) XX, 1-3. 1908.
42. Prehistoric Fishiug in Japan. Journ. Coll. Agr. Tokyo, II, 327-382. 1911.
43. Contributions to the study of mackerels, seerfishes, and tunnies (Japanese). Suisan Gokkwai Ho (Proc. Sci. Fish. Ass.), I, 1-24. 1915.
41. Auatomy of the dark red muscle called chiai (Japanese). Suisan Gakkwai Ho, I, 128-136. 1915.
45. - I new order of the Telecstomi (Japanese). Suisan Gakkwai Ho, II, III-114. 1917.
46. ———Studies on the Plecostei (Japanese). Suisan Gakkwni Ho, II, 269-274. 1918.
47. - Immature stage of plecostean fishes (Japanese). Suisan Gakkwai Ho, ШU, 49.53. 1918.
48. Kiragara, Th-Scombridae of Japan. Journ. Inap. Fish. Bureau, V̌I, I-3. 1997.
49. Liluzanger, C. B.-Die Fische des Rothen Meeres. Stuitgart. 1881.
50. Fitnona. J.-Suizokıshi (Aquatio animals). Manuscript, 1827. Text only printed in 1884. Tokyo.
51. Iacépi:De, 15. (f. E,-Histoire taturelle des poissons. Taris. 1798-1803.

52 Iowe, I. T.- 1 supplement to a syuopsis of the fishes of Maleira. l'roc. Zool. Soc. Iondon, III, 1-20. 1819.
53. Löterea. U.-Spolia athatica. Copenhagen. 188:).
 17. 326-337. 1886.
5%. Additional remarks on the exterual aspects of the tunay. Anv. Mag. Nint. Hist. 5 ser. 17. 523-525. 1886.
56. Masterman, A. T.-On the skeleton of the tunay. 12. Ann. Rept. Fishery Bonrd Scotland, 272-293, 1894.
57. Meer. A-The migration of fish. London. 1916.
58. Oisata, Ni.-Studies on the chiai musele (Japanese). Tokyo Ignkkwai Zasshi. XXXII, 1061. 1918.
59. OKeds, I.-Ou the ehemistry of "chiai"-flesh Jonrm. Coll. Agr. Tokyo, VII, 1-28. 1919.
60. Owes, Iv-Lectures on the comparative anatomy and physiology of the vertebrate animals. Fishes. London. 1846.
61. Portier. P.-Sur la temperature du Thynnus alalonga. Bull. Soc. Zrol. France, Niviif, 79-81. 1903.
62. Regas, C. T.-Anatomy and classification of the scombroid fishes. Aun. Mag. Nat. Ifist. s' ser. III, 6f-75. 1909.
63. Rocue. G. fobis, A. Lar peche du germon dans le golf de (raseogne. Pev. des Sic Nat. de l'ouest. 1893.
(6.t. Iovgley, T. C.-Fishes of Australia and their technology. Sylbey, 1916.
(is. Focle, Locis-Considerations sur la biologie du thou comminu (Oreynus-thynnus). Bull. Inst. Oceanogr. Monaco, 1918.
66. Rưppel, E-Atlas zu der Ieise im nordlichen Afrika. Franlifurt. 1828.
(i7. —__ Nene Wirbelhiers. Fiscbe. Frankfurt. 1838.
68. Schlegel, H.-Fauna Jajodica. Poissons. Leyden. 1859.
69. Starks, E. C.-Osteology of Scombridae. Journ. Morph. XXI, 77-99, 1910.
7. - The osteological characters of the scombroid fishes of the families Gempylidne, Lepidopilae and Thichiuridae. Leland Stanford T"niv. Public. 17-2f, 1911.
71. Suutr, 1. A.-History of Scandidavian fishes. Stochholm. 1833.
72. Stemdachner, F. \& Dünerlets, 1.-heitrige zur lientniss der Fische Japans. Denkschr. Aknd. Wiss. Wien, 1883.
73. Takei. S.-U'wollrgami (Fishes). Yedo. 1831.
74. Tavara, S.-Figures and descriptions of the fishes of Japan. 1-X. Tokyo, 1911-12.
75. Temajar, R.-W゙aknn Sansai Zuye (Illustrated natural history of the O ient). 1712.
76. Wiedershem, R.-Yergleiehende Anatomie der Wirbelthiere. Jena. $19,12$.
77. Yabrell, W.-S history of British fishes. Lonlon. 183C.
78. Yıshiro, H.-Kokon Yōran Kō.

Explanation of Plates.

PJATE XIIL.
Fig. 1. Scomber japonicus. Skin, hypaxial lateral muscle, and a part of the candal portion removed, showing the vascular system, viscera, intermuseular tendons, ete.

Fig. 2. Auxis manu. Skin, pale coloured portion of the bypaxial lateral muscle remored, logether with an external part of the dark red portion removed between the 13 th to 18 th vertebra. In the cross-seetions of the lateral mascule, both epaxial and hypaxial of the dark red portion are represented. Two small cones of museles round a respective tendon, axial and cutaneous (lower eanal is not represented) vascular systems are shown.

PLATE XIV.
Fig. 3. Thumnus orientalis. Skin, anterior portion of the hypaxial lateral muscle, and a part of gills and gill-eover have betn remored, exposing the cutaneous vascular system and the viscera.

Fig. 4. Porathunnus mebachi. Skin, hypaxial lnteral muscle, most part of viscera, and the caudal peduncle removed, to show the vertebral vascnlar system, cataneous rascular system, intermuscular tendons, etc.

PLATE KV.

Fig. 5. Fialsuwonus pelamis. Shin, and hypaxial lateral muscle removed, to show the vertebral and the hyparial cutaneous rascular system, viscera, ete.

Fig. 6. Cybium niphonium. Greater part of the muscle removed at the anterior part, leaving the intermuscular bones, the membrane connecting them, intermuscular teadons, median proximal portion of myocommata, and segmental blood ressels.

PL.'TE XVI.

Middle transverse section of vertebrae. The dotted line in the figures separates the caudal vertebrae from the precaudal, and the numeral in a smaller type is the number of a vertebra from the anterior end.

Fig. 7. Scomber japonicres.
Fig. 8. Grummatorrymus lilinentus.
Fig. 9. Cybium niphonium.
Fig. 10. Acanthorybium slandri.
Fig. 11. Sarda orientalis.
Fig. 12. Gymnosardes nuda.
Fig. 13. Neothunnus macropterus.
Fig. 14. Fatsuconus pelumis.
Fig. 15. Auxis maru.

1'LTE: STII.

Cross-sections of the lateral muscles nat the lorsal and ventral carinales (oue half moicty), showing the relation between the clark coloured portion and blood-vessels, and also the number of myotomes.

I'ig. 16. Scomher japonimas.
Fig. 17. Surda orientalis.
Iig. 18. Scothunnus maeropterus.
I'ig. 19. Kivtsumonus prlesmas.

PLIITE XVIII.

Cutaneous blool ressels and miuute blood ressels connected with them in the dorsal part of the budy (demidingramatic).

Fig. 20. Thunnus getmo.
Fig. 21. Thunnus orientalis.
Fig. 2e. I'urathennus mobrehi.
Fig. 23. Neothommus matropterus.
Fig. 21. Neothuntuls rarus.
Fig. 25. İatsuzcomes peleniz.
Fig. 26. Euthynnes grato.
Fig. 27. Auxis nneru.

PLITE SIX.

Scomber jajonicus.
l'ig. 29. Tariety " hirasabn."
Fig. 29. Variety "gomasaba" or "marusaba" (imamnture),
Fig. 30. Skeleton. a. dorsal surface of the skull. \%. Ventral surface of the skull c. Fentral view of the anterior preanutal vertebrae to the first vertebra with the haemal arch closed. d. Dorsul view of the vertelorae of the caudal peduucle.

YLATE İ.

Fig. 31. Acanthocylium solandri.
Fig. 32. Cybium niphonivm.
Fig. 33. Surele oripntalis.
PLSTE XVI.
Fig. 31. Oybium rlimense.
Fig. 3.5. Cybium horeunam. (6. Ventral view of the skull. b. Dorsal view of the skull. c. Side Fiew of the skall.

PLATE XXII.
Fig. 36. Cytium commerson.
Fig. 37. Gymnosurdir mula.

Fig. 38. Skeleton of Gymnnsaria mulic. a. Dorsal view of the skull. b. Ventral view of the skall. C. Ventral view of anterior precandal vertebrae to the first vertebra in whieh the haemal areh is elosed. d. Dorsal view of the vertebrae of the eaudal peduncle.

PLATE XXIII.

Fig. 39. Skeleton of Acanthocybinem solandri. a. Dorsal view of the skull. b. Ventral view of the skull. c. Ventral view of anterior precaudal vertebrae to the first vertebra with the closed haemal arch. 13. Dorsal view of the vertebrae of the candal peduncle.

Fig. 4). Skeleton of Oy'rium chinense. a. Dorsal view of the skull. U. Tentral view of the skull with following vertebrae. c. Dorsal view of vertebrae of the caudnl peduncle.

PLATE SXIV.

Fig. 11. Skeleton of Oybium nirhonium. a. Dorsal view of the skuil. b. Ventral view of the skull and precantal vertebrae. c. Dorsal view of vertebrae of the candal pedunele.

Fig. 42. Skeleton of Sirda orientuis. u. D risal view of the skull. b. Ventral view of the skull. c. Ventral view of anterior precaudal vertebrae. d. Dorsal view of vertebrae of the candal peduuc.e.

PLATE IXV.

Fig. 43. Thammus orienlalis. Immature speeimen, about six months old.
Fig. 41. Skelton of the above.

PLATE XIVL.

Fig. 45. Niothunnas macroptervs. (Immature).
Fig. 46. 7voranus germo.

PLATE SIVTI.

Fig. 47. Paratizemnus me'rchi. (Immature).
Fig. 48. Teothumus robres.

PLATE XXVII.

Fig. 49. Skull and vertebral ea.umn of I'aruthunnus mebuchi,.
Fig 50. Slall and vertebral column of Thunnus orientalis.
a. Dorsal view of the skull. U. Veutral view of the skull. c. Ventral view of the anterior vertebrae till the first hnemal arch is elosed. Anterior \%ygnpophyses of the second vertebra are represented in Th. orientalis only. 1. 1horsal view of the caulal vertebrae. (Th. orientalis, ventral view?)

ITATE AXIX.

Fig. 51. Skull and vertebral colimu of Seothumas macropteris.
Fig. 52. Skull and vertebral column of Thanmus germo.
a. b, r. 1d. The same as in the preceding plate.

PLATE XXX.

Fig. 53. Kivetwiranzes priamis.
lig. it. Euth!nerws y, ifo.

MASTE XXXT.

Fig. S5. . Intin hive.
lig. int. Alext:s marne.

14.,

Jig. is. Sknll and vertebral colimn of Kictsuromes prtamis.
Fig. 58. skull and vertebral cohumn of Eisthymas yato.
(6. Dorsal view of the shull. 4 . Ventral view of the skall. c. Ventral view of the anterior vertubrae. thll the first hacmal arch is closed. do Dorsal view of the eatud verthbrat. e.f. g. Three stazes of hacmal |rocesses till they nnite to form the huemal cannl in precnudal vertebrac.

PlITE XXXIE.

Eig. $5: 3$ Skull and vertebral ejlumu of Auxis hive.
Fig. 60. Skull and vertcbral column of Ahatis mava.
4. Dorsal vien of the skull. b. Ventral view of the skull. \because. Veatral view of the vertebral column to the first catulal vertebra, in wheh the hamal frch is closed if. Dorsal view of the candal vertebree in which the lateral process or ringe is more or less developed. e.f. $\%$. Thrce stages of the derelopment of the hatmal processes in the preaudal vertebrae. In the last stage the epilatemal proess is remarkably ilereloped.

PGATE NKN゚TV.

Fig. 61. Cybium guttutum.
Fig. 62. livammatore?mus bilinoutus.
Iig. 63. linstrelliger chrysozomas.
Fig. 64. Skull and vertebral colnma of Seothamues ratrus,
4. Dorsal view of the skull. b. Ventral of the skall. c. Ventral view of the anterior vertebrac till the first haemal arch is elosed. d. Dorsal view of the enurtal vertebrae.

Index to the Vernacular Names.

Abuko 441.
Aosnwara 418
Binchoh 434.
Binarga 434.
Bintsuke 448.
Chiboh 463.
Daiuanpo 463.
Darumashibi 412.
Gesunaga 446,
Gomasabr $40 \overline{5}$.
Gotoshibi 437.
Gurukun 406.
Hagatsumo 421.
Hasawara 418.
Hashibi 446, 448.
Hatsu 446.
Hitagatsuwo 457, 462.
Hiramedika 462.
Hirasaba 404.
Hirasawara 420.
Hirashibi 412.
Hirasobda 462.
Hirenaga 44 .
Hoteisawara 418.
Hohzinn 424.
Imoshibi 441.
Inusawara 418.
Isomaguro 426.
Itoshibi 446.
Kahpah 419.
Kakinotane 441.
Kamasusawara 411.
Fantaro 434.
Katsuwo 453.
Kibata 446 .
Kimedi 446 .
Finhire 116.
Kitsunegatsuwo 121.
Kiwada 416.
Koshinaga 119 .
Kuroshibi 437.
Kusamorhi 418.
Kusarah 413.
Magatsuwo 4.53, 163.
Maguro 437.

Manba 163
Mandarn 463.
Mandaragatsuwo 453.
Marugatsuwo 4 C3.
Marumedika 463.
Marasaba 404.
Mebacbi 442.
Mebato 412.
Medi 437.
Murehji 496.
Nodoguro 463.
Obosogatsuwo 457, 462.
Obkamasa 411 .
Okisawara 411, 418.
Robsoku 463.
Saba 403.
Sabagats iwo 424.
Sagoshi 421.
Sawara 411, 421.
Segatsuwo 457.
Seiyoshibi 448.
Shibuwa 462.
Shimagatsuwo 421.
Shiroshibi 48.
Soma 462.
Subotas 463.
Sujigatsuwo 421.
Sumn 457, 462.
Tessabku 411.
Tolzan 424.
Tojinsawara 411.
Tokakio 126.
Tomboshibi 435.
Tongari 418.
Totuh 116 .
Uke 418.
Uramnwarigatsuwo 157.
Ushisawara 416, 113.
Uzuwa 463.
Watauabe 457.
laito 457.
linitopam 457.
Yaitosuma 457.
Yokoshimasarara 116.

Index.

Ib lominal cavity 353.
Aenuthorybinm 110.
Acanthoey binu solanlri 1.11.
dir-bladler 3.51
Albaeora alalonga
Alisphenoid 314.
. Tanl tiu 3)s.
Angnlar 323.
Arterial system 372.
Astienlat 323
Auxis 4 (i).
Auxis hirn 162.
Auxis marn 433.
Auxis rachei 163.
Auxis tupeinosoma f6i3.
Auxis (Stomber) thazarel fir3.

Basibranchials 328.
Lasioccipital 319.
Basisplenoid 317.
Branchinl arehes 323.
Branchiustegals 328, 361.
Caurlal fin 30\%.
Ceratobranchials 331.
('eratohyal 327.
Chini 317.
Clavicle 332 .
Clavicular lignment 332.
Coeliacomescnterie artery 378.
Colour 208.
Cutnneons vascular system 365.
Cybiilae 407.
Cybium 415.
Cybinm commerson 416 .
Cybiam guttatum 419.
Cybium koreanum 12.).
Cybium niphonium 421.
Cybium ehinense 48 .
Daiboami fon
Dentary 323.
Development 381.
Digestive system 350 .
Distribution 390.
Dorsal fins 307.
Drift net 393.
Enemies 394.

Epibranchinls 3:31.
Epihaemal process 310.
Epilıynl 328.
Epiotic 317.
Jilhmoid 31』.
Fathy nans 450 .
Eutlymmes alleterata 457.
Buthynnus lineatns 459.
Enthynnus pelamis 453.
Euthymus yaito 157.
Exccipital 318.
Eyes 303.
Fins 3%.
Fishery 391.
Food 383.
Form of the borly 290.
Frontal 313.
Gall-bladder 363.
Gill-rakers 351.
Glossohyal 326.
Grammatorcynus 413.
Grammatoreynus bilineatus 413 .
Growth 384.
Gymn sarda 426.
Gymnosarila nuda 12%.
Gymnosarda pelamis 153.
Habit 381.
Haxd-line 397.
Ifcad 301.
Heart 372.
Hook and line 396.
Hyoid arch $32 G$.
Hyomandibular 321.
Hypercoracoid 333 .
Hyjobratchinls 33).
Hyprohynal 326.
Interhyal 325 .
Iuterrunseniar boues 311.
Interopercle 325.
Interspinons bones 343.
Intestine 360.
Jaw bones 32).
lintsuwodidne 450 .

Katsuwonus 152.
liatsuwonus pelamis 453
lidnneys 379.
Kurochiai 371, 377.

Lateral line 393.
Ligaments 33i).
liver 361.
Locomotion 388.

Markings 29\%.
Maxillary $32 J$.
Median superficial lateral muscle:
Mesopterygid 321.
Metapterygoid 322.
Migration 389.
Mouth 302.
Muscular system 315.
Mgotome 315.
Nisal 3ily.
Neothunnus 415 .
Nethumus macropterus 446 .
Neothumnus rarus 448.
Nervons system 351.
Olfactory org in 353.
Opercle 323.
Opereular bones 323.
Opisthotic 319.
Orcynus schlegeli $1: 37$.
Orcyaus sibi 412.
Oreynus thynnus 437.
Otokith 352.

Parasites 394.
Paraspbenoirl 311 .
Parasphenoila] elnamber 315.
Parathunnus 112.
Parathumas melachi 112
Taratine 321.
Parietal 316.
Pectoral fins 3 Mi .
Pectoral girille 3:3.
Perlicle 310.
Telvic gritle 334.
Teritonem 35 .
1 lecostei 12 n .
l'ostclaricle :333.
l'osticmporal 3:31.

Pound net 319
Prefrontal 312.
1'remasillary 32 .).
Preopercle 325.
Preorbital 31!\%
Prootic 3I\%.
Pteroti - 318.
Pterygoil 321.
Pyloric coeer 359.
Pyloric tubule 359
Pylorns 358.

Uuadrate 323.

Rastrelliger 49 h .
Rastrelliger cbrysozonus 10%.
Red gland 356.
Renal organ 379.
Rejroductive system 380 .
Respiratory system 303.
Rils 311.

Sarda 421.
Sarda orientalis 121.
Seales 3 J.
Scomber 1.03.
Scomber colias 403.
Scomber juponicus 173.
Scumbriilae ta\%.
Seines 3%.
Sense organs $3 j \mathrm{l}$.
Size of the bolly 295 .
Skin 3\%.
Skeleton 319.
Skull 310.
Snout 3) 2.
Sphenotic :316.
Spleen 303.
Stomach 3is.
Stylohyal 328 .
Subopercle 325.
Subspinal vascular plexus 3 a
Supraclavicle 332.
Supraocipital 315.
Symplectic 32:3.
Tweth 312.
Tendous 351.
Thambilate 132 .
Thumbus 1 :5:3.

Thunmes germo 1:31.
I'bunnas orientalis $1: 37$.
Thymms athinis 15%.
'lhymus nllacorn 1 /K.
Thynnus olvesus 415 .
Thymus preifions 13 i .
Thgnuus sibi 45.
Thynnus handina 157.
Tongle 3.ti.
'Troll line 39 .
Tunny long live 397.
(Treters 879.

1'rimary bilathler 3 s).
ITrohyal 32s.

Viscular system 305.
Vinous system 31i7.
Ventral tins $: 3$)7.
Perteloral column 33's.
Vertebral arterial system 371.
Verteloral venums system $3: 37,37$).
Viscernl arterial system 378 .
Yisceral vemons system $3 ; 3,371$.
Vomer 313.

[^1]

Scomber juponicus

Cutaneous blood-vessels

S. Kikkawa del.

Jour. Coll. Agric. Vol. VIII. No. 3.

Dorsal branches of the cutancous blood-ressels

Transverse commissure of the

S. Kikkawa del.

Carlinal rein

S. Kikkawa del.

Ventral chtaneons bloxl-vessols

Miadle Transwerse Suction of Vurtabrae,
7. Scomber jafonicus $(14+17)$.
9. Cy'term niphomizm $(22+28)$.
11. Surde oriendelis $(25+20)$.
13. Tenthenmus musropteres $(18+21)$.
15. Ateris mas's $(20+19)$.

A dotted line separates the candal verlebrae from the preandal, anl the numerals in a smaller lype denote - the orlinal number of vertebrae, counted from the anterior end.

Chuss--scedions of the laterat masche and the domst and dark eolomitel portion and bleor

trit carinales (oue half moiety), showing the relation between the siels, and also the number of wyotumers.

Cutancous blood-vessels (expaxial) and vascular plexus conuected with them. Maguifed.

S. Kikkawa del.

Jour. Coll. Agric. Vol. VIII. No. 3.

C'yluiun" niphomimm $\frac{1}{4}$
S. Kikkawa del.

Acandhorghium solumbri it

Serrla oritutalis \&

b

S. Kikkawa del.

Cylium chinense $\frac{1}{4}$

Cylitm liorctaum $\frac{1}{2} \frac{1}{7}$

S. Kikkawa del.

B3

Gigmasasarela nula $\frac{1}{5}$

40

S. Kikkawa del.

-Icrintlinmbizum solantiv

Crybium chinerse

S. Kikkawa del.

Jour. Coll. Agric. Vol. VIII. No. 3.

S. Kikkawa del.

Thamnus ycrmo $\frac{1}{3}$

48
S. Kikkawa del.

(imanature)

Acollomeses rates $\frac{1}{3}$

Jour. Coll. Agric. Vol. VIII. No. 3.

Perathumbus moluchit $\frac{1}{4}$

Thromus oricutulis :

49 (1

49) 6

Jour. Coll. Agric. Vol. VIII. No. 3.

S. Kikkawa del.

S. Kikkawa del.

S. Kikkawa del.

S. Kikkawa del.
S. Kikkawa del.

1
"

4 4 人

$$
-4 x, 0 x+x
$$

I'

$$
\hat{y}_{i}^{\prime} \text { netueu s?xnV }
$$

60

$$
\text { (2) } 2 \text { 군: }
$$

Anxis live 品

Auris tive is

[^0]: 1. One of the pionecrs who establisbed the tum fish trade in South California.
[^1]: Publiwhel Mareh 30th, 192?.

